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EDITOR’S PREFACE

The “Reviews of Plasma Physics,” Vol. 22, contains two re-
views. The first “Cooperative Effects in Plasmas” by the late
B. B. Kadomtsev may appear nontraditional from the point of
view of the previous content of the series Reviews of Plasma
Physics. 1t is based on the second edition of the author’s book in
Russian which originated from his written lectures for students
of the Moscow Institute of Physics and Technology. Kadomt-
sev intended to publish the book in English and even initiated
the translation himself. The book represents a review of the
typical plasma cooperative phenomena that determine the be-
havior of laboratory and astrophysical plasmas. It is character-
ized by lively language. During his work on the English version,
Kadomtsev made some amendments. He also changed the ar-
rangement of the sections. The first three sections of the review
deal with linear and nonlinear phenomena in fluids without a
magnetic field. An additional subsection “Solitons” has been
added to the third section. The next two sections address reg-
ular nonlinear phenomena in a plasma in a magnetic field. The
last section of Kadomtsev’s book, “Plasma turbulence,” was not
included in the English version. Possibly the author considered
that this material was sufficiently well covered in his other books
Plasma Turbulence (Academic Press, London, 1965) and Toka-
mak Plasma: A Complex Physical System (Institute of Physics
Publishing, Bristol, 1993). More probable, he intended to make
amendments in this section but had no time.

The second review by S. V. Bulanov et al. is connected
with the contents of the first. The physics of the laser-plasma
mteraction including such nonlinear processes as wave break-
ing, the acceleration of charged particles, electromagnetic wave
self-focusing, the relativistic soliton and vortex generation, are
considered analytically and illustrated using computer simula-
tions. I hope that both reviews will be received with interest by
our readers.

V. D. Shafranov
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COOPERATIVE EFFECTS IN PLASMAS

B. B. Kadomtsev

1. Preliminaries

1.1. Plasma states

The term “plasma” was proposed by Langmuir for a mix-
ture of electrons and positively charged ions to indicate its un-
usual physical properties. Plasma exists in such circumstances
when a gas can be ionized. A very small quantity of ions ex-
ist even in a candle flame. But to be considered a plasma the
density of the charged gas component must be not too small.

The level of gas ionization can be characterized by the ra-
tio of the ion density to the neutral atom density. When this ratio
is not too low and the ion interactions with the electromagnetic
fields become important, the charged components of the ionized
gas can be considered a plasma. There are many examples of
plasma states. The most familiar is ordinary lightning: plasma
here is produced for a very short time interval during the giant
electric discharge between a cloud and the ground. The myste-
rious ball lightning is probably another member of the natural
plasma states family.

Our Sun and all of the stars are giant plasma spheres.
The Sun’s surface displays a lot of very complicated physical
phenomena reflecting the very rich internal life of solar plasma.
No less complicated plasma phenomena occur in near space on
the boundary and inside the Earth’s magnetosphere. The corre-
sponding plasma activity is produced by the interaction of the
solar plasma wind with the magnetic field of the Earth.

Plenty of different plasma patterns are produced artificial-
ly by man in various specific devices. The most familiar-are the

1
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S. V. Bulanov, F. Califano, G. I. Dudnikova,
T. Zh. Esirkepov, I. N. Inovenkov,
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Y. Sentoku, V. A. Vshivkov,

V. V. Zhakhovskii

Introduction

Over the last few years we have witnessed extremely rapid
progress in laser technology. The laser intensity / has increased
by two orders of magnitude every couple of years and has now
reached a value of I ~ 10! Wcm™2 in the radiation emitted by
petawatt lasers [1]. The electric field of these pulses is of the or-
der of 102V cm™!, significantly exceeding the interatomic field.
Such a large electric field fully ionizes the matter with which it
interacts and can force the electrons in the plasma to oscillate
with relativistic energy. In these regimes the specific features of
the nonlinear dynamics of collisionless plasmas and their inter-
action with electromagnetic waves become very important and
attractive for theoretical studies.

In the relativistic range of amplitudes of laser radiation,
when its intensity is above 10'® W cm™2, the ratio vg/c becomes
close to one in the case of laser light with wavelength 1um.
Here vg is the quiver oscillation velocity of electrons in the laser
field. In particular this means that the magnetic part of -the

227
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Lorentz force ev x B/c becomes as important as the electric part
eE. Relativistic effects modify the nonlinear processes that are
known in the limit of moderate radiation amplitudes and make
it possible for essentially new nonlinear phenomena to occur.

Problems of the interaction of relativistically strong laser
radiation with plasmas which are of increasing interest find var-
ious broad applications in the development of new concepts of
compact laser-based accelerators of charged particles [2], power-
ful ultra-fast X-ray sources (see [3]) and controlled nuclear fu-
sion in the framework of the Fast Ignition Concept [4]. They
are also connected with problems of propagation of relativisti-
cally strong electromagnetic waves in space plasmas and with the
mechanisms of acceleration of cosmic rays [5]. Particle acceler-
ation by an ultra-intense laser pulse interacting with a plasma
also has practical applications to laser induced nuclear reactions
[6], ion injection into conventional accelerators, hadrontherapy
in medicine [7] and, for extreme accelerations, to the testing of
Unruh radiation [8]. When a petawatt laser pulse interacts with
matter, conditions can be produced that were imagined to occur
only in astrophysical objects. This opens the way for experimen-
tal plasma astrophysics to study the properties of matter under
these extreme conditions [9].

One of the most attractive applications of ultra-short super-
intense laser pulses is connected with the development of new
methods of accelerating charged particles. It seems that present-
ly operating accelerators of charged particles have approached
their maximum reasonable size. The main restriction on the ac-
celerator size is imposed by the critical value of the electric field
strength, of order E. =~ 10%V cm™!. If this value is exceeded an
electric discharge forms on the chamber walls. These difficulties
were evident as far back as the fifties when V. I. Veksler, G. 1.
Budker and Ya. B. Fainberg proposed the use of collective elec-
tric fields excited in a plasma (collective methods of acceleration)
to accelerate charged particles (see [10]). The generation of high
energy particles, both electrons and ions, when strong electro-
magnetic radiation interacts with a plasma is a well known basic
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phenomenon [11]. However it is necessary to find the plasma and
radiation parameters that optimize this process.

Among the wide variety of methods for generating a regu-
lar electric field in plasmas with strong laser radiation, the most
attractive at the present time is the scheme [2, 12] of the laser
wake field accelerator (LWFA). In this method a strong Lang-
muir wave is excited in the plasma and the charged particles are
accelerated by the electric field of this wave. The advantages
of Langmuir waves for charged particle acceleration, emphasized
in Ref. [12], are related to the fact that the electric field in the
wave is longitudinal and that its frequency w,, does not depend
on the wave vector. This means that the group velocity of a
Langmuir wave in a cold plasma, Owp./0k, is equal to zero, i.e.,
the wave stays in the plasma for a long time at the place where
it is generated and can be used for charged particle acceleration.
A plasma wave with wavenumber k, = ¢/wp, has a relativistic
phase velocity, and the charged particles at resonance can be
accelerated up to ultra-relativistic energies.

Another fascinating suggestion for using ultra short laser
pulses is related to a scheme which aims at achieving fusion
conditions with a reduced laser pulse drive energy [4]. In the
standard scheme of inertial confinement fusion (ICF) a pellet
containing high pressure deuterium-tritium (DT) fuel is made to
achieve a large isoentropic compression by ensuring a high de-
gree of symmetrical irradiation of the driving nanosecond laser
pulse. A significant amount of laser energy is needed in order to
create at the center of the target with converging shock waves
a hot spark with the required high temperature. Then a burn
wave propagates through the fuel via alpha particle heating. The
amount of additional energy needed in order to reach high gain
depends on the degree of spherical convergence, which can be
spoiled by the development of a Rayleigh-Taylor instability. On
the contrary, in the fast ignition scheme it is suggested that a
multi-terawatt laser pulse drills a channel towards the center in a
precompressed target. Then, a picosecond petawatt pulse accel-
erates electrons up to multi-MeV energy values. The relativistic
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electrons heat a small portion of the fuel before it can disassem-
ble. A number of fundamental questions must be addressed in
this scheme, such as the hole drilling and the transport of the
laser pulse energy, the acceleration of fast particles and their
interaction with a dense plasma.

The laser radiation is characterized by its incidence angle
on the plasma, 6 and by its polarization, which can be circular,
elliptic or linear. In the case of linear polarization, for oblique
incidence one distinguishes s- and p-polarized waves. We con-
sider a laser pulse of length [,, with electric field amplitude Ej,
and carrier frequency wp. In describing the laser pulse interac-
tion with plasmas, it is convenient to use dimensionless units
in order to characterize the plasma density and the laser pulse
amplitude.

The plasma density can be described by a dimensionless
parameter defined as the ratio’ of the density n to the criti-
cal density n.. In a plasma with density equal to the criti-
cal density, the carrier frequency of the laser radiation wy is
equal to the Langmuir frequency w,e = (47ne’/m,)'/?, ie.,
wo/wpe = (Ner/n)/? = 1. When wy/wpe > 1 the plasma is de-
scribed as “underdense.” Such a plasma is transparent to the
laser radiation. The group velocity of the electromagnetic wave
is close to the speed of light. A plasma where wp/wpe < 1 is
described as “overdense.” The electromagnetic radiation can-
not penetrate deeply into an overdense plasma. It penetrates
into the plasma as far as the evanescence length, which is of the
order of d. = c¢/wpe, Where d. is the collisionless skin depth.
However, for relativistic intensities, the collisionless skin depth
changes (the refractive index changes) and an overdense plasma
can become transparent.

When the dimensionless ratio

ap = eby (1)

meWwoC

is much smaller than unity, the quiver velocity, vg = eEy/m.wo,
is small compared with the speed of light in vacuum, ¢ (and the
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quiver radius rg = eEy/mew? is much shorter than the wave-
length of the laser radiation, A = 27c/w,) and we can neglect
relativistic effects and use classical mechanics in order to describe
the interaction of the laser light with charged particles. In the
opposite limit, when ay > 1, we must describe the laser-matter
interaction in the framework of the relativistic theory.

First of all the relativistic effects qualitatively modify the
charged particle dynamics in the field of the electromagnetic
wave. From the exact solution of the equations of motion of a
charged particle in a planar electromagnetic wave {13] it follows
that the transverse component of the generalized momentum is
constant,

pL— g A | (z — ct) = constant, (2)

and the energy and the longitudinal component of the momen-
tum are related as

1/2
mec?y — pc = (mZc* + p2 ¢ + pic?) 2 _ pjc = constant. (3)

In the reference frame, where the charged particle was at rest
before the interaction with the laser pulse, the particle kinetic
energy K = mec?(y — 1) and momentum p are given by the
expressions (see Ref. [14])

K= %meﬁ |al(z - ct)|2, 2 n
M@‘ML

pL=meca,(z—ct), p = Emec

Here a, (z — ct) = eA | (z — ct)/m.c®. We see that for |a | > 2
the particle acquires a relativistic energy and the longitudinal
component of its momentum is larger than the transverse com-
ponent.

We shall call the laser radiation with ap > 1 superintense
or relativistically strong. The dimensionless amplitude of the
electromagnetic wave (1) can also be expressed, via the radiation
intensity I and the wavelength ), as:

ao = [(1/1.35 x 10’8 W cm™2) (/\/lum)2] "
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Fig. 1. Three-dimensional pattern of relativistic
self-focusing and filamentation of linearly polarized
(in y-direction) e.m. radiation (seml-mﬁmte laser
pulse with a = 3 and width 12)) in an under-
dense plasma (wpe/w = 0.3) at t = 60(27/w): (a)
distribution of tﬁe e.m. energy density in z,y,z-
space; (b) distribution of the y-component of the
quasi-static magnetic field in the z,z-plane; (c)
isosurface of the ion density (n = 0.6 nc).

Since the radiation of petawatt lasers, focused into a spot with
diameter of the order of the radiation wavelength, reaches a mag-
nitude about 1.35 x 102! W cm ™2, we see that the dimensionless
amplitude (1) in this case is well above unity, ap ~ 40. We see
that the value of the amplitude of the petawatt laser radiation
written in dimensionless units becomes larger than (m;/m,)'/?,
which means that the physical processes due to nonlinear ion
dynamics come into play.
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Probably the most impressive nonlinear phenomenon in an
underdense plasma is the self-focusing of laser radiation. Self-
focusing, discovered by G. A. Askar’yan in 1962 [15], appears due
to the nonlinear change of the refractive index of the medium in
the region where a high intensity electromagnetic wave propa-
gates. In the multi-terawatt or petawatt laser pulse-plasma in-
teraction self-focusing appears due to the relativistic increase in
the electron mass and to the plasma density redistribution under
the action of the ponderomotive force (see Fig. 1). The threshold
(critical) power for relativistic self-focusing is [16, 17, 18]

P, ~ 2mlcw}/e*w?, ~ 17(wo/wpe)? GW. (5)

When the laser power far exceeds the critical power, the laser
beam may split into separate filaments.

In Figure 1 we present the results of 3D PIC simulations
of laser beam propagation in an underdense plasma. The self-
focusing of the linearly polarized pulse is anisotropic in the plane
perpendicular to the pulse propagation according to the direction
of the light polarization.

Superintense laser radiation in a plasma is subject to a
host of instabilities. The fastest is the stimulated Raman scat-
tering (SRS) instability [19, 20], which develops on the electron
time-scale. Stimulated forward Raman scattering (SFRS) leads
to self-modulation of the laser pulse with a modulation length
of the order of 27/k, = 2wc/wpe [21-26]. Self-modulation of the
laser pulse is of great importance for the LWFA, where the laser
pulse excites a longitudinal electric field, which in turn acceler-
ates electrons up to high energies (2, 27-29].

For ultrashort superintense laser pulses, the stimulated
backward Raman scattering (SBRS) instability is the first to
develop. SBRS leads to the erosion of the amplitude profile at
the leading edge of the pulse and to the formation of a steep laser
front similar to a shock in a time of the order of w,,!(wo/wpe)?.
Such a shock front generates a wake field, which accelerates the
electrons in the plasma, thus leading [32, 24] to fast depletion of
the laser-pulse energy, taep ~ (Wo/Wpe)?7p, and to induced focus-
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Fig. 2. Shock-front development in the laser pulse
during its propagation in underdense plasmas. The
SBRS gives the seed for the modulation at the lead-

ing part of the pulse, where a =~ 1. Then the mod-
ulation develops into a shock-front.

ing of the laser light behind the front [33]. In Figure 2, we show
the formation of a shock-like profile in the leading part of the
laser pulse propagating in an underdense plasmas as it follows
from the 1D PIC simulations[32].

The electrons accelerated inside a self-focused laser pulse
produce electric currents in the plasma and a quasistatic mag-
netic field associated with them (see Fig. 1b). The attraction of
the electric currents leads to the redistribution of the fast elec-
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trons. This in turn changes the refractive index because, due to
the relativistic increase of the electron mass, the effective plasma
frequency is smallest in the regions with the highest concentra-
tion of fast electrons. This process causes high intensity laser
radiation to interact magnetically in plasmas, makes the laser
light filaments merge and provides a mechanism for transport-
ing the laser energy over long distances [34].
As a consequence of the equation

4men
c

VxB=-

v, (6)

in a plasma dominated by the electron dynamics the quasistatic
magnetic field is associated with electron fluid vortices. In this
case the vorticity is V x v = cAB/4wen. Both the electrostatic
wake fields and the magnetic field vortices stay in the plasma
much longer than the laser pulse because of their very low prop-
agation velocity. On the other hand, sharply focused bunches of
ultrarelativistic electrons, accelerated during the breaking of the
wakewave, can generate a strong magnetic field which propagates
together with the bunch and which is due to the magnetic com-
ponent of the Lienard-Wiechert potential of the electron bunch
(35].

In an overdense plasma with wy/wy. < 1 one can never ne-
glect the plasma inhomogeneity. The laser radiation penetrates
the plasma to just over the evanescence length which is of the or-
der of the collisionless skin depth. When the plasma has a sharp
boundary the laser plasma interaction takes place at the plasma-
vacuum interface. At a sharp plasma-vacuum interface the laser
radiation can easily extract the electrons from the plasma and
accelerate them towards the vacuum region. This process, known
as “vacuum heating of the electrons” [36], provides an effective
mechanism of anomalous absorption of the laser light. At a steep
plasma-vacuum interface the laser radiation radiates harmonics
due to the so called “oscillating mirror” mechanism or due to
the nonlinear motion of the electrons in the narrow region near
the plasma boundary [37].
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When the plasma has a smooth density distribution, the Lang-
muir frequency is a function of the coordinates wpe(r), and the
processes that occur in the vicinity of the critical surface, in the
region of the plasma resonance where wy = wp(r), play a key
role [20]. In the plasma resonance region the electromagnetic
wave resonantly excites an electric field with a very high amp-
litude, localized in a narrow region where the laser radiation is
absorbed and fast particles are generated [11].

The interaction of laser pulses with overdense plasmas is
of great importance for the development of high intensity X-
ray sources and controlled nuclear fusion. The ponderomotive
pressure causes a plasma density redistribution in the transverse
direction that changes the refractive index and allows the laser
pulse to penetrate into an overdense plasma. This is the basic
idea of the hole boring and of the laser energy transport in the
fast ignition concept ICF [4].

Recently a new type of target for laser-matter interaction
has appeared which consists of a gas made up of clusters that are
relatively small pieces of a solid material. Very efficient absorp-
tion of the laser energy interacting with the clusters and the for-
mation of very high temperature underdense plasmas have been
demonstrated in Refs. [39-41]. Such high temperature plasmas
make table top fusion experiments possible [40].

The complexity of the laser-plasma interaction due to the
high dimensionality of the problem, to the lack of symmetry and
to the importance of nonlinear and kinetic effects prevents an-
alytical methods from providing a detailed description. On the
other hand, powerful methods for investigating the laser-plasma
interaction have become available through the advent of modern
supercomputers and the developments of applied mathematics
(43]. In the case of ultra-short relativistically strong laser puls-
es, simulations with 3D Particle In Cell codes provide a unique
opportunity to adequately describe the nonlinear dynamics of
laser plasmas, including nonlinear wave breaking, the accelera-
tion of charged particles up to high energy and the generation
of coherent nonlinear structures such as relativistic solitons and
vortices.
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1. Relativistically strong electromagnetic
waves in underdense plasmas

Constant amplitude solutions of the equations for linear
electromagnetic and Langmuir waves can be written in the form
of waves propagatmg with constant velocity: u(z,t)=wu, cos{kz—
(k% + w2,)"/2t] and u(z,t) = u cos(kz — wpet). In both cases
the frequency and the velocity of propagation do not depend on
the wave amplitude. This is a property of linear, small ampli-
tude, waves. In the case of finite amplitude waves the frequency
depends on the wave amplitude. In the theory of the interaction
of high-intensity laser radiation with plasmas the seminal paper
by Akhiezer and Polovin [44] played a key role for many years. In
this paper the exact solution to the problem of the propagation
of a relativistically strong electromagnetic wave in a collisionless
plasma was found.

1.1. Basic equations

We now turn to the study of finite amplitude waves in a
cold collisionless plasma [44]. Assuming also that the ions are at
rest, we consider the model of an unbounded cold collisionless
plasma, described by Maxwell’s equations and by the hydrody-
namic equations of an electron fluid in a fixed ion background
with ion density no(z):

AA — —auA - —V@ttp - 4"2"; (1? + SA) —0, (11)

e

ne = n;(z) + mmp, (1.2)
P =V (eap - meczfy) + % (’P + SA) X (Vx’P) . (1.3)

The continuity equation is implied by equations (1.1) and (1.24).
These equations are written in the Coulomb gauge:

V-A=0. (1.4)
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Here P is the canonical electron momentum, P = p—eA/c, and
2
the relativistic Lorentz factor is v = [1+('P+eA/c)2 / (mecz)] V2,

Let us consider the case where all the variables that char-
acterize the fields and the plasma are independent of y and =z,
so that 0y = 8, = 0. This implies A, =0 and P, = P, = 0.
We can rewrite equations (1.1)-(1.3) in components as

Oxtp — 4menep)|/mecy = 0, (1.5)

OrzA | — Oy A — (4me®n./mec*y)AL =0, (1.6)
ne = 1;() + Oz p/4re, (1.7)

0:p)| + Ox(ep — mec?y) = 0, (1.8)

1/2
where y = [1 + (eA L /m.?)? + (p /mec)2] 2 The subscripts ||
and L denote the components of the vectors along and perpen-
dicular to the z-axis.

Assuming that the ion density is homogeneous and that
the wave propagates with constant velocity v,,, we look for so-
lutions that depend on the variable X = z —v,;t. We obtain for
the electron density

NiMeVUph”Y
ne = —ielphY 19
© mecBumy — ) (19)
and
WheP||
ﬁ p— m " —_— p = 0, 1.10
( phD|| 867) (mecﬁph')' _ p||)02 ( )
Wi, Bon Yz
Al 2R A =, 1.11)
=7 (Bpny — )¢ (
Here and below Bpn = vpr/c, and vy, = (1 — 82,)7"/2, a prime

denotes differentiation with respect to variable X.
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1.2. Longitudinal relativistically strong waves in cold
plasmas

Assuming the transverse components of electron momen-

tum to be zero which implies A; = 0, we obtain from equation
(1.10):

[(ﬁphpu/mec—v)] (vm v, (112

where 7, = [1 + (pm/mec)z] =1/ (1 — B2)/? is an integra-
tion constant, and 3, is the maximum value of the electron
velocity in the longitudinal wave normalized on ¢: -8, < 3 =
p|/mecy < Bm. Integrating equation (1.12) we obtain

V2o X =\ = = 2B5n [F (¥, K) = (m + DE (¥, )]

(1.13)
where F' (V¥,x) and E (¥, k) are incomplete elliptic integrals of
the first and second kind, while

AN 1/2 o — 1 1/2
¥ = arcsinh | [ T2 =7 and k= |2 ‘
Ym +1 Ym + 1
are their argument and modulus, respectively. In a relativis-

tically strong Langmuir wave the electric field depends on the
coordinate X through the relationship

260 -] " (1.14)

We see that the maximum electric field is at the point where
py(X) =0. .

The expression for y given by equation (1.13) is periodic
in X. For the wave frequency we get

E— mewpec

w= e [K(0) ~ (m+ DEG)] T, (119)

where K (k) and E (k) are complete elliptic integrals of the
first and second kind. We see that the wave frequency does not
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depend on the phase velocity of the wave. This means that the
wave is not dispersive. One can obtain simple formulae for the
frequency in two limiting cases: small and large amplitudes of
the wave. In the first case when p,, < 1, the frequency is

W = Wpe [1= 3 (pm/4mec)?] (1.16)

which corresponds to the nonlinear shift of the frequency. In the
second limiting case when +,, > 1 the frequency is equal to

W = Twpe 1122732, (1.17)

Rewriting this expression in terms of the maximum value of the
electron momentum, p,, = mec(y2, — 1)/2, we obtain that the
period of the wave is T = 27 /w = 4(pp/2m.c)?w,,!. A finite
amplitude longitudinal wave is not harmonic and its spectrum
contains all odd and even harmonics of the Langmuir frequency.

The expression given by equation (1.9) becomes singular
when the maximum velocity of the electrons in the wave be-
comes equal to the wave phase velocity, i.e., when v = vy, =
(1 — B2,)""/2. This corresponds to so called wave breaking [44].
Close to the wave-breaking limit when, ¢3, — v, the maxi-
mum of the electron density tends to infinity while the width of
the density spike tends to zero. For c¢@, = vpn, from equations
(1.9) and (1.13) we obtain that the electron density in the spike
tends to infinity as

n(X)/mo = 233 (3w X/Br) "

as X — 0. We see that the characteristic cusp like pattern
p o< z2/3 appears in the phase plane (see also [45]):

(1.18)

PY(X)/mee = B [1 = (BwpeX/eBm)**] +....  (1.19)

However, integrating the electron density (1.18) in the neighbor-
hood of the singularity we find that the total number of particles
in the density spike is finite.
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The wave breaking imposes a constraint on the maximum
value of the electric field in the wave,
MeWpeC

Ep = == 20y~ 1)]'*, (1.20)

which is the Akhiezer-Polovin limiting electric field.

1.3. Transverse relativistically strong
electromagnetic waves

For a purely transverse electromagnetic wave, from equa-
tion (1.11) with py = 0 we find that the wave is circularly
polarized and the amplitude of the vector potential A,

1
A = §Al(ey + ie;) exp(iwX /vps) + (c.c.),

is constant and the frequency is

_ wpeﬂph7ph

where
a=eA; [me’. (1.22)

In z,t-coordinates this corresponds to the dispersion equation
for the frequency and wavenumber

2
w? = kAt 4 2

The dispersion equation (1.23) can be rewritten in the form
1/2

k= [w2(1 + a|?)V/2 - w;fe] / /c(1+|al?)/4. We see that an elec-

tromagnetic wave can propagate in an overdense plasma, where

w K Wpe, provided

w > wpe/(1 + |af2)V/4. (1.24)
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This corresponds to the relativistic transparency of overdense
plasmas which has been discussed theoretically [44, 46] and stud-
ied experimentally [47].

The electric field in the wave is equal to £ =wA, /¢, and
the magnetic field is B = cwA, /vpn. From equation (1.23) it
follows that the wave velocity is greater than the speed of light
in vacuum:

-1/2
Uph = € [1 - w;‘,’e/wz(l + |a|2)1/2] . (1.25)

In the case of a purely transverse electromagnetic wave we
can also look for the solution of equations (1.5)—(1.8) in the form
ne =mn;, py =0 and

A = %Al(x — vgt)(ey + i€;) exp [— iw(t — z/vph)] + (c.c.),

with vpp # vy. Assuming the wave amplitude to be constant we
obtain that the frequency is given by
__ WpeBg
w= @+ ) (1.26)
and the relation vyup, = ¢? for the group and phase velocity.

In linearly polarized waves the transverse and the longi-
tudinal motion of electrons are always coupled and described by
equations (1.10) and (1.11).

When irradiated by a relativistically strong electromag-
netic wave, an overdense plasma becomes transparent. A low
frequency wave can propagate through the plasma if the plasma
electrons do not screen the electric field of the wave. The con-
dition for wave propagation implies that the convection electric
current —env is smaller than the displacement current 0,F /4w
in the wave, i.e.,

wE
< — 1.
engv < ™ (1.27)

In the nonrelativistic limit v ~ eE/mew, and the condition of
transparency is equivalent to w > wpe. In the ultrarelativistic
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limit v =~ ¢, and we can write that the plasma becomes trans-
parent if
w > wpe/|al'2. (1.28)

1.4. Stimulated Raman scattering

The fastest instability which leads to the erosion of the
laser pulse is the stimulated Raman scattering (SRS) instability
[19, 20], which develops on the electron time-scale. In SRS, an
electromagnetic pump wave (wg,ko) is scattered by a plasma
wave (we,ke,), which in turn is excited by the beating of the
pump and the scattered (wi, k;) waves. Thus, there is a feedback
loop, which results in the onset of the instability. The frequencies
and wavenumbers of the waves involved satisfy the conditions:

Wop — W1 = We,

ko—kl = ke.

The case when the vectors k; and kg are nearly par-
allel (k; =~ ko and k. =~ kp = wpe/c < kq) corresponds to
stimulated forward Raman scattering (SFRS). This involves the
self-modulation of the laser pulse with modulation length of the
order of 2 /k, = 2mc/wpe [21-26]. For direct forward scattering,
the characteristic rise time of the SFRS-induced modulation of
a superintense circularly polarized laser pulse is of the order of
tm ~ 1/7,v% [23, 24], where 7, is the pulse duration,

(1.29)

o ala
\/gwo’)’i

is the growth rate of the SFRS instability in a homogeneous-
amplitude pump field (we have assumed 7,7¢ < 1), and v, =
(1 + |a]?)¥/2 is the relativistic factor of plasma electrons oscil-
lating in the pump field. SRS at small angles (8 ~ 1/k,r, <
1 with 7, being the laser spot size) also involves modulation
of the spot-size and develops in a time of the order of t, ~
(Ir/c) (P./P)™/% x (wpemp) ™42 [21, 25, 26], where lp = kor2/2

(1.30)
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is the Rayleigh length (the characteristic length for diffractive
spreading) and P is the pulse power. Self-modulation of the
laser pulse is of great importance for the LWFA, where the laser
pulse excites a longitudinal electric field, which in turn acceler-
ates electrons up to high energies [2]. The LWFA experiments,
performed under conditions when the self-modulation plays a
key role [27-29], have yielded the highest rates of electron accel-
eration under terrestrial conditions.

The case when the vectors k; and k, are antiparallel
(k; = —ko and k. = 2kg) corresponds to stimulated backward
Raman scattering (SBRS). For ultrashort superintense laser puls-
es, this instability is the first to develop. In contrast to the SFRS
instability, the SBRS instability is convective. The perturbations
inside the pulse arise from the thermal noise of the electron plas-
ma density ahead of the pulse. In a time of the order of the
pulse duration, a steady-state solution is established inside the
pulse. This solution is characterized by the spatial growth rate
q ~ /¢, where vyp is the growth rate of the SBRS instability in
a homogeneous-amplitude pump field. For circular polarization,
we have [23]

\/g 1 1/3
YB = m (5 (J.)sz2w|a|2> (1.31)

(the growth rate of the SBRS instability for linear polarization of
the pump field is of the same order of magnitude 30, 31]). SBRS
leads to erosion of the amplitude profile at the leading edge of
the pulse and to the formation of a steep laser front similar to
a shock in a time on the order of w;,'(wo/wpe)?. Such a shock
front generates a wake field, which accelerates the electrons in
the plasma, thus leading (24, 32] to fast depletion of the laser-
pulse energy [tgep ~ (wo/wpe)?7p] and to induced focusing of
the laser light behind the front [33]. In Figure 2 we show the
formation of a shock-like profile in the leading part of the laser
pulse propagating in an underdense plasma as follows from the
1D PIC simulations[32].
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1.5. Self-modulation of laser pulses

As was noted above, self-modulation of the laser pulse
corresponds to direct-forward or near-forward Raman scattering,
which, depending on the plasma and laser pulse parameters, is
accompanied by a longitudinal [23, 24, 26] or transverse (25,
26] redistribution of the laser energy. The self-modulation of a
weakly relativistic (|a| < 1), fairly wide (k,rp > 1) pulse can
be described by the set of equations for the complex amplitude
of the laser field and for the perturbation of the electron density
[26] that follows from equations (1.1)—(1.3):

. Oa wpe\2 5 0%a #a 5, (on |af?
2isn gy +¢* A0 +( ) oxz " *pxor  re\m 2 )
(132)
o, _ M #laf
o7 +hn =20 (1.33)

where X =z — vyt with v, = ¢®kp/w, the pulse group velocity
(vg =~ ¢). The mechanism for the modulation instability is as
follows. An initial perturbation of the electron density with lon-
gitudinal wavenumber close to k, (such a seed electron density
wave can be excited, e.g., by a sharp leading edge of the pulse
[48, 49] ) results in the redistribution of the laser field energy
and causes a modulation of the pulse amplitude with the same
longitudinal wavenumber. In turn, this modulation enhances
the electron density perturbation. In fact, the self-modulation
is mainly related to the change in the refractive index of the
plasma caused by the perturbations of the electron density (the
first term in brackets on the right-hand side of (1.32)), whereas
the relativistic change in the electron mass (the second term in
brackets on the right-hand side of (1.32)) is of relatively minor
importance. For sufficiently long pulses, the self-modulation can
develop in a time shorter than the diffractive spreading time even
for P« P..

Different regimes of the self-modulation instability are re-
lated to whichever, among the terms after 2iwo0A, /0t in the
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left-hand side of (1.32), dominates. The second term is respon-
sible for the transverse redistribution of the laser energy and
is associated with the modulation of the laser spot size. The
third and fourth terms cause the longitudinal redistribution of
the laser energy. The role of these terms can be estimated by
solving the set of equations (1.32) and (1.33) keeping only one
term at a time and then comparing the resulting time dependen-
cies of the amplification factor of the initial perturbations of the
electron density, dn/ng, in the trailing part of the pulse, where
the amplitude of the excited wakefield is maximum.

1. When the fourth term dominates (first 1D regime), we
have [23, 24]

In(6n/no) =~ 2vr ()2 (1.34)

(Note that this expression is also applicable to relativistic laser
amplitudes.) It is seen from (1.34) that, as time elapses, the log-
arithmic time derivative of perturbations and, accordingly, the
role of the fourth term decrease. At a certain time, if nonlinear
saturation is not yet attained, this term becomes smaller than
either the second or the third term.

2. When the third (dispersion) term dominates (second
1D regime), we have [24, 26]

/3
on lwlh o o !
In (no) o~ (8 ”la) 'rpt) : (1.35)

3. Finally, if the second term dominates (3D regime), we
have [25, 26]

on 2w 1/3 P c2t?
In (n0> o~ (m—wrpﬁ) 16— Pt (1.36)

(it is assumed that the transverse profile of the laser field amp-
litude is of the form |a| = ag exp(—1?/72)).

A comparison of expressions (1.34)—(1.36) shows that 1D
modulation dominates when 4wy < wpek,m, and the 3D modu-
lation dominates when

1 + a2wpeTy < (dwo/WpekyTp)™ (1.37)
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If the inequalities

are satisfied, the instability occurs in two stages: the instability
starts as a 1D modulation (1.34) and, in the second stage, the
modulation of the laser spot size dominates. In this case, the
transition from 1D to 3D regime corresponds to In(dn/ng) =~
a3wpeTp(4wo/wpekprp) ~2 > 1; i.e., the initial perturbation amp-
litude must be very small for such a transition to take place be-
fore the nonlinear saturation (6n/ny ~ 1) occurs. It also follows
from (1.34)-(1.36) that, if (16P/FP.)wpetp > 1, the modulation
always develops in a time shorter than the diffractive spreading
time lg/c.

These estimates show that the parameters of the exper-
iments on the electron acceleration with ultaintense laser puls-
es [27-29] formally correspond to the first 1D regime of self-
modulation (1.34). In this case, however, the propagation of the
laser pulse should also be affected by the formation of a shock-
like front due to the finiteness of the pulse (see Fig. 2).

1.6. Relativistic filamentation and self-focusing

It has been shown [16] that, in a weakly relativistic regime
(a2 <« 1), a plane electromagnetic wave is subject to the so-
called relativistic filamentation instability. The mechanism for
this instability, which manifests itself in the splitting of the elec-
tromagnetic wave into narrow beams (filaments), is related to the
relativistic increase in the mass of plasma electrons oscillating in
the high-power laser field and to the corresponding increase in
the plasma refractive index. If the wave amplitude is initially
slightly modulated in the transverse direction, then the modu-
lation of the refractive index causes the wave fronts to curve.
This results in a redistribution of the electromagnetic field ener-
gy in the transverse direction so that the modulation amplitude
increases, i.e., an instability develops. The filamentation insta-
bility can be described in terms of the reduced equation for the
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wave amplitude [51]

Oa ) 0 (1.39)
— a=0, .
ot V1m0

in which, in addition to the relativistic increase in the electron
mass, the effect of the electron blowout from the regions where
the field amplitude is increased is taken into account: n/ny, =
14+k;2A, .. Linearizing equation (1.39) for small perturbations
of the field amplitude, we obtain the dispersion equation
ki

4’7_?_0"73
where k, is the transverse wavenumber of the perturbation and
Q, = 'yj_(}/ 2wpe is the relativistically corrected electron plasma
frequency. The perturbation frequency 2 is imaginary (i.e., the
instability develops) if k1 < ki max = |a|Q/c. For k1 > k1 max,
diffraction prevails and the instability is suppressed.

The relativistic filamentation instability leads to relativis-
tic self-focusing of the laser-beam. In the weakly relativistic case
(la) < 1), the condition for relativistic refraction to dominate
over diffractive spreading is P > P, [see (5)]. It is easy to verify
that this condition is the analog of the above condition for the
filamentation instability with k1 ~ 7', (where 0 is the initial
laser spot size). For P = P,, diffractive spreading of the laser
beam is balanced by the radial inhomogeneity of the plasma re-
fractive index caused by the relativistic increase in the electron
mass. For P > P,, relativistic self-focusing overcomes diffrac-
tive spreading and, in the cubic-nonlinearity approximation, the
axially symmetric beam is focused into a field singularity (the
transverse size of the laser beam tends to zero and the amplitude
of the laser field tends to infinity) in a finite time

tog ~ (/) (P/P.~1) " (1.41)

If P> P,, depending on the initial radial intensity profile, the
laser beam can split into several filaments, each of which can
undergo catastrophic self-focusing.

2iw

+ c2AJ_a +w§e (1 -

o =

(K2 - 2af?), (1.40)
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The cubic-nonlinearity approximation breaks and the beam
stops collapsing when the field amplitude near the focus becomes
relativistically strong (|a| & 1). In this regime of saturated non-
linearity, the self-focused laser beam evolves into a filament with
a transverse size of the order of several wavelengths, as is seen
in Fig. 1.

The propagation of a relativistically strong (]a|] > 1) short
pulse (or of a long pulse with a sharp leading edge), is accom-
panied from the very beginning by the excitation of a strong
wakefield. In this more involved situation self-focusing cannot
be studied separately from other dynamical processes, including
pulse self-modulation, generation of a strongly nonlinear wake-
field, erosion of the leading edge, etc. At present, a consistent
analytical theory of relativistic self-focusing and filamentation of
ultrashort superintense laser pulses is still lacking and informa-
tion on the dynamics of self-focusing of such pulses is provided
mainly by computer simulations (see, e.g., [34, 52]). In Fig. 1
we see that the self-focusing of the linearly polarized pulse is
anisotropic and that the laser pulse drills a channel along the
direction of polarization, as seen in frame (c).

2. Acceleration of charged particles and
photons

2.1. Langmuir wave excitation

The basic factor in the excitation of a strong plasma wave
is the action on the plasma of a strong and sufficiently short laser
pulse with length, I,, shorter than the plasma wave length. The
response of the electron component to such forcing is nonadia-
batic and, as a result, a wake plasma wave is generated behlnd
the pulse [2, 54].

Let us suppose that the pulse propagates in an under-
dense plasma, i.e., that its carrier frequency wq is larger than
the plasma frequency wy.. In this case the difference between. the
velocity of the laser pulse propagation (i.e., the electromagnetic
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wave group velocity)
vgRC (1 - w:e/2w§) R ¢, (2.1)

and the speed of light in vacuum is small. From the phase reso-
nance condition kyvpn = Wpe, it follows that the Langmuir wave
has a phase velocity vp, equal to the pulse group velocity (2.1),
i.e. close to the speed of light.

In the ultrarelativistic limit, (a > 1) the resonant ampli-
fication of the plasma wave is not effective due to the strong de-
pendence of the Langmuir frequency on the wave amplitude [55],
and the wake field excitation by a single laser pulse is preferable
[48, 56]. (See however Ref. [57] where the plasma wave excita-
tion by a sequence of relativistically strong nonequidistant laser
pulses is considered). The acceleration of electrons in electric
fields as large as 100GV m~! has been observed in LWFA ex-
periments in the interaction of high intensity laser pulses with
plasmas [27-29)].

The plasma wake wave amplitude depends on the param-
eters of the plasma and of the laser radiation. For optimal con-
ditions in the nonrelativistic case (a < 1) the value of the elec-
trostatic potential in the wave is of order ¢ ~ mc?|a|?/e [2, 54].

In order to examine the excitation of the wake field in a
plasma we consider a circularly polarized laser pulse with di-
mensionless amplitude a, propagating in an underdense plasma
(wo > wpe) along the x-axis. We write the dimensionless vector
potential a in the form a(X,t) exp(—iwpt — ikox) + (c.c.). Here
the wave frequency is related to the wave vector by the disper-
sion equation w = k3c? + w?,. The complex amplitude a(X,t)
is a function of the variables ¢ and X = z — vgt with v, the
group velocity vy = c?ko/wo. Assuming the ions to be at rest
and assuming that the change in time of the vector potential
a(X,t) and of the dimensionless electrostatic potential ¢(X,t)
are slow (0/0t < ¢0/0X) and that v, = ¢, we find from the rel-
ativistic hydrodynamic equations and from Maxwell’s equations
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(1.1)—(1.3) a system of coupled equations [48, 49]:

2 _ 2 2 2
2iw0@+(wpe) 26a+2 0“a (aﬁ) ¢ a, (2.2)

ot \wo)ox2 T Yaxat \w/ 1+ 6
8% _ kf, 1+ |al?
axz =2 |Trer Y (2:3)

where k, = wpe/v,. Here the vector potential a is normalized
to mewoc/e and the electrostatic potential ¢ is normalized to
mect/e. If a = 0, equation (2.3) describes free Langmuir os-
cillations in the limit v,, = c¢ considered above [see equation
(1.12)]. In a weakly relativistic limit equations (2.2)—(2.3) re-
duce to equations (1.32)-(1.33) in the case V, =0.

If the laser pulse is assumed to be given as a square-pulse
profile with amplitude ag (|a|? = a3 at L < X <0, and |a|> =0
at X < L,X > 0), the analytical solution of equation (2.3) in
the region occupied by the pulse can be expressed in terms of
elliptic functions [48, 56]

ol(e1ea\] _a
kpX = -2 1+a§E{arcsm l(a—%m ' (1+ a2)1/2
ot — ¢ 1/2
9 0 ' 2.4
+ ( 1+¢) 9

By matching this solution with the solution for the free plas-
ma wave, we obtain that the typical value of the electrostatic
potential in the plasma wave is [48, 56]

Pmaez ~ mec2a§/e- (2.5)
The optimal pulse length is L = 2(1+ a2)V2E [ao(1 + a3)~"/?] .

The corresponding “wake field” has a wavelength equal to A =
23/2|ag|k,?, and the maximum electric field is

E = m,Cuwpea?/(1 + a2)*/%e. (2.6)
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We emphasize that the electric field in the wake behind the laser
pulse can be even higher in the case of a breaking Langmuir
wave [59]. The maximum electron energy in the wake wave can
be written using the first integral of equation (2.3) and is given

by
do 1 ati—¢

(dX) 2kp<p 174" (2.7)
Here the constant of integration is chosen such that there is no
wake wave before the laser pulse. We see that the potential
inside the laser pulse varies between zero and m,c?a?/e. Behind
the laser pulse, for an optimal pulse length, the electrostatic
potential also scales as a3.

In the course of the wake wave excitation the laser pulse
loses its energy. The typical time of laser pulse depletion is of
the order of [32]: tn =~ w,,!(w/wpe)?ag’. This process is accom-
panied by a downshift of the laser radiation carrier frequency.

This follows from the conservation of the first integral of equa-
tion (2.2)

/XmlaP '-( g; gx)] /dX|a|2“’. (2.8)

Here the vector potential is supposed to be of the form a =
|a| exp [i'l9(X , t)] , and the local frequency is

0 09
=5 [wot -z — vgt,t)] = Wo — Vg (2.9)

Integral (2.8) implies the conservation of the photon number in
the electromagnetic pulse which is proportional to |F|?/w. Since
the laser pulse loses its energy, the value of |E|? decreases. This
leads to a decrease of the carrier frequency of the laser radiation.

It is crucial to find the maximum value of the longitudi-
nal electric field since its magnitude determines the acceleration
rate of charged particles. Constraint (1.20) implies that a sta-
tionary Langmuir wave cannot have an electric field larger than
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the critical value. (When T, > mcz’y,','h2 it is necessary to take

into account the effects of the finite value of the plasma elec-
tron temperature [58].) However it is possible to obtain electric
fields in a plasma with substantially larger amplitudes (1.20).
In a nonstationary, breaking plasma wave the amplitude of the
electric field can be as large as

Enm = mecwpeYpn/2e, (2.10)

and effective acceleration of charged particles in such a field has
been shown in numerical simulations[59] and in experiment [60].

In the case of a laser pulse with amplitude a > (m;/m,)/?,
which corresponds to the petawatt power range, ions can no
longer be considered to remain at rest. The modifications
of the “wake field” generated by a sufficiently short laser pulse
with a ~ (m;/m.)"/? propagating in an underdense plasma (see
for comparison equations (1.10) and (2.3)) are given by

d*¢ _ VarBpr (1 + ¢)
aXT 2 1+ - L+ a2(X)])
_ VonBen (1 — ¢)
(-8 -2 +ax))

where u = m;/m,.. We assume that the (circularly polarized)
laser pulse is known and use normalized variables. In the case
of immobile ions the electrostatic potential is bound to —1 <
¢ < a?, with a; being the maximum value of the laser pulse
amplitude [48]. On the contrary, from equation (2.11) we see
that the effect of the ion motion restricts the potential ¢ between
the two bounds (in these estimates we assume (3, — 1)

(2.11)

—1 < ¢ < min{y,a?}. (2.12)

From equation (2.11) we can also find that behind a short laser
pulse with length [ = 2'/2/a,, (the optimal length for the excita-
tion of a relativistically strong “wake field” [48]) the wavelength
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Aw of the wake wave and the maximum value of the electric field
E,, and of the potential ¢, scale as

Mo =222y, Ey=an/2Y?, ¢y =d, (2.13)
for 1 < a, < p'/?, and as
Aw = 21/2H/am, E, = am/21/2a bw = U, (214)

for a, > p'/2. For ay > p'/? the “wake field” wavelength de-
creases with increasing laser pulse amplitude while the value of
the electrostatic potential does not change.

2.2. Charged particle acceleration by the “wake field”

To be effectively accelerated, a charged particle must be
in the proper phase with the wake plasma wave. In a plasma
with uniform density the phase velocity of the wave does not
change along the path of propagation while the particle velocity
increases in the acceleration process. This leads to breaking of
the wave—particle resonance conditions and limits the particle
energy. In inhomogeneous plasmas the group velocity and the
amplitude of the electromagnetic wave packet depend on the
coordinates so that the phase velocity and the amplitude of the
plasma wake wave vary. With the appropriate choice of plasma
density profile it is possible to increase the acceleration length
significantly.

The equations of electron motion in the electric field of a
one dimensional wake plasma wave can be written in the form
(61]

d (¢y)_1 22, 2\1/2 ] w;‘,’e
(3] bl o

% (mzc4 + pzcz)l/ g —eE, (2.16)

where z is the particle coordinate and

W = Wpe(t — to) = Wpe (t - dx’/vp;.) (2.17)
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is the wave phase, ?y is the time at which the laser pulse reaches
the point z, p is the particle momentum, and F is the “wake
field.”

The electric field F depends on the coordinate z and on
the phase 3. As follows from equations (2.15) and (2.16), in a
homogeneous plasma an ultrarelativistic particle in a moderately
strong plasma wave acquires an energy of the order of

A€ =~ eFEl,,., (2.18)
where [, is the acceleration length [2],
2
c 2c 2c [ w
lacc%——z_2=—(_) . 2.19
Wpe(C — Uph)  Wpe Ton Wpe \ Wpe (2.19)

This length is (w/wpe)? times larger than the plasma wave length.
We note that this result has been obtained in the limit of a
small amplitude wakefield. In the case of the relativistically
strong “wake field” given by (2.4) the acceleration length is
lace ® (2¢/wpe)¥2ha. The maximum energy of accelerated par-
ticles is limited by the constraint imposed due to the plasma
wave breaking (1.20): Emax = 4mec?y3, [62].

In an inhomogeneous plasma with a density that depends
on the coordinate as n¢(z) = no(L/z)¥3; L ~ (c/3wpe) (w/wpe)?,
a laser pulse with moderate amplitude, a < 1, and length [, ex-
cites a wake plasma wave with electric field E(z,t) = —w2,(z) x
(melpa®/4e) cosp. In this wave the acceleration length becomes
formally infinite and the particle energy growth is unlimited [61]

£(2) = mee? (i)2 (%) v (2.20)

pe

2.3. Injection of charged particles into the acceleration
phase

The production of accelerated electron beams with a low
energy spread requires very precise injection of extremely short
electron bunches in the appropriate phase of the “wake field.”
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Since the typical length of the wake-field plasma wave is of the or-
der of 2m¢/wpe & 10—100 pm the length of the injected electron
bunch must be shorter than 2—20 um. An optical method for
injecting electrons in the accelerating phase of the “wake field”
proposed in Ref. [65] uses two laser pulses: the first pulse (the
driver) generates the wake field, while the second intersects the
wake some distance behind the driver pulse. The ponderomotive
force ~ Va? of the second pulse can accelerate a portion of the
electrons so that they become trapped. A scheme of optical in-
jection with three laser pulses, one high-intensity driver and two
counter-propagating injecting laser pulses with moderate inten-
sities, has been proposed in Ref. [66]. In this scheme the colliding
laser pulses excite a slow phase velocity beat wave that injects
electrons into the accelerating phase of the fast wake wave. This
scheme requires accurate synchronization. Instead one can use
the “wake field” breaking of the wake wave of a single laser pulse
for the electron injection so as to overcome any synchronization
problem [67].

As we have discussed above, the Langmuir wave break oc-
curs when the quiver velocity vg of the electrons becomes equal
to the phase velocity of the wave. In a plasma with inhomoge-
neous density, the Langmuir wave wavenumber depends on time
through the well known relationship (63, 64] 0,k = —0,w. The
resulting growth in time of the wavenumber results in the break
of the wave even when the initial wave amplitude is below the
wave break threshold. In this case the wave break occurs in such
a way that only a relatively small part of the wave is involved.
We can use this property to perform a gentle injection of elec-
trons into the acceleration phase.

As a result of the break [the wave structure is described
by expression (1.19)] fast electrons from the wave crest are trap-
ped by the wave and are pre-accelerated into the region where
the phase velocity increases and the “wake field” has a regular
and steady structure. In this way we obtain a gentle injection
of electrons into the acceleration phase in the wake far from the
breaking region.
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The breaking leads to local decay of the wake wave. Its
energy is transported away by the fast electrons. From the ener-
gy balance we estimate the fast electron density in the breaking
region to be equal to

Ninj = No&m/ L. (2.21)

The results of 1D PIC simulations of the electron injection
due to wake wave breaking are presented in Fig. 2.1. We see that
due to wake wave breaking a portion of the electrons is injected
into the acceleration phase and further accelerated up to the
energy which corresponds to the expression given by equation
(2.18). In the vacuum-plasma interface we see the formation
of wake breaking towards the vacuum region discussed in Ref.
[68]. This process is similar to the “electron vacuum heating”
discussed in Ref. [36]. At wt/27 = 130 (frame a) we see the
formation of the cusp structures that characterize the wave break
described by equation (1.19). At wt/27 = 200 (frame b), during
the wave break, particles are injected into the accelerating phase
of the wake field. Further acceleration is seen for wt/2m = 300
(frame c¢), and wt/2r = 2500 (frame d). At time wt/2m =
2500 the maximum energy of the fast particles is approximately
330mc?. The most energetic particles have been accelerated in
the first period of the wake-wave behind the laser pulse.

A very important feature of this injection regime is that it
provides conditions where the resonant wave-particle interaction
in the region of homogeneous plasma forms electron bunches that
are well localized both along the z-coordinate and in energy
space as is seen in Fig. 2.2.

2.4. Transverse wake-wave breaking

A different form of wave break can occur in 2D and in 3D
configurations in the wake of a relativistically strong, wide laser
pulse or of a pulse propagating inside a plasma channel. The
2D “wake field” in a plasma has a specific “horse-shoe” [33, 18]
(or “D-shape”) structure where the curvature of the constant
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Fig. 2.1. Electron phase plane obtained with 1D-
PIC simulations: (a) at t = 130(2n/w); (b) at
t = 200(27/w); (c) at t = 300(27/w) and (d) at
t = 2500(27/w). A circularly polarized laser pulse
interacts with a weakly inhomogeneous plasma.
Asymptotically the plasma is homogeneous with
density n/ng = 1/625 (w/wpe = 25). The plasma
is homogeneous in the domain 96 < z/\ < 128
and its density decreases gradually from 1/714n,
to 1/625n; in the domain 128 < z/A < 152.
The laser pulse length is 12X\, and its amplitude
is a=2.

phase surfaces increases with the distance from the laser pulse
front. A corresponding curved structure is obtained in 3D. These
structures improve the focusing of the accelerated particle and
focus the laser radiation [33, 18, 50]. The curvature radius R
decreases until it is comparable to the electron displacement &
in the nonlinear plasma wave leading to self-intersection of the
electron trajectories.
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Fig. 2.2. Deunsity inside the bunch of accelerated
electrons at t = 2500(27/w): (a) versus particle
position z, and (b) versus particle energy p;c.

We consider a “wake field” plasma wave excited by a
laser pulse of finite width S. The resonance condition gives
wpe/k = vpn. The transverse inhomogeneity of wp. is caused
by the inhomogeneity of the plasma density, if the laser pulse is
guided in a plasma channel, and by the relativistic dependence
of Q, =~ Q,(0) = 7wpe/2a(0) on the plasma wave amplitude,
which is determined by the pulse transverse shape. The plasma
wave frequency can be approximated in the vicinity of the axis
by the parabolic form Q,(y) ~ ©,(0) + AQ,(y/S)?. Here Awpe
is the difference between the plasma frequency outside and inside
the channel or is given by AQ, ~ 2,(0) if the “wake field” is ex-
cited by an ultra high intensity pulse with a > 1 and the pulse
transverse profile is approximated as a(y) = a(0)(1 —y2/S5?). As
a consequence of these inhomogeneities the plasma wake wave-
length A\, = 27/k; depends on y. From the expression of the
constant phase curves, ¥ (z,y) = wpe(y) (t — =/vpn) = constant,
it follows that their curvature 1/R increases linearly with the
distance ! from the laser pulse,

1 2wpel

B Q05 (2.22)
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where | = 9vp,/€(0). Thus we can write the constant phase
curves as

To = T — Upht + Y/ (0) = y3/2R. (2.23)

The real position of the constant phase curves in a non-
linear plasma wave is shifted from the curves given above by the
oscillation amplitude £. Thus, when R becomes of the order
of the electron displacement &, the wake plasma wave starts to
break[70]. From these considerations, the distance between the
laser pulse and the first place of breaking can be estimated as
Q,(0)52/(2AQ,€), and the number of regular wake wave periods
as

9252
Ny ~ 47rcAQp§m (224)

The exact form and spatial dependence of the displace-
ment ¢ in a 2D (or 3D) configuration will depend on the specific
laser-plasma regime under consideration. Nevertheless, a num-
ber of important features about the geometry of the phase sur-
faces near the axis at wave break can be understood by taking,
for simplicity, the displacement to be perpendicular to the phase
surfaces (in the 2D case the parabolic curves =, — y3/2R, =
constant, while in the 3D case the paraboloid surfaces o —
y2/2R, — 22/2R, = constant) derived in the linear approxima-
tion, and writing the new surface, r = ry + &(ro), as

(%% }z:) + £(¥o, 20) [1 + (;’2‘;) + (;—‘l)?]:l/z(z.zs)
y = y0{1+£(y;£:o) 1+ (i’{;) + (—1’%)2- —1/2}, (2.26)

L ZO{HE(y}(;,zzo) .1+ (2) + (-1‘33)2 —1/2}. (2.27)

Here R, and R, are the curvature radii in the y- and z- direc-
tions.

N
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Fig. 2.3. Surface of constant phase in the 3D case
for (a) R < ¢ and £ = const; (b) £ # constant
with 6 = 4.

If we neglect the dependence of the displacement £(yo, 20)
on the coordinate yq, 2o along the wave front, equations (2.25)-
(2.27) define a so-called surface parallel to a paraboloid. The
singularity that is formed for min{Ry, R,} < &, corresponds to
the self-intersection of the electron trajectories. This is shown
in Fig. 2.3a. In a more realistic analysis the amplitude of the
displacement is not constant and in the most likely conditions it
has its maximum on the axis. We describe this dependence with
the Lorentzian form:

£(yo, 20) = &m [1 + (y0/Sy)* + (ZO/Sz)2]

The singularity that is formed for R < &, is shown in Fig. 2.3b.

-1

(2.28)
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In order to clarify the structure of the singularities we con-
sider the 2D case where R, — oo and S, — 0o. Then the con-
stant phase surface has a parabolic form that corresponds to our
2D computer simulations discussed below. If £ is independent of
the coordinate yp, we obtain a singularity where the dependence
of z on y is of the form y ~ |z|3/%. For R < £, a multival-
ued structure appears which is known as the “swallowtail” [69]
in catastrophe theory. Near the breaking threshold, the value
of the displacement on the axis is close to that of the curvature
radius, {(0)/R—1 =¢ < 1, and the size of the swallowtail is of
order €2 along z and £%2 along y. The typical portion of the
affected wave measured in terms of y, is /2.

2.5. Upshifting of the electromagnetic wave
frequency during the interaction with
nonlinear plasma waves

When the laser pulse propagates in the plasma, its carri-
er frequency changes. When an ultra short laser pulse interacts
with a finite amplitude plasma wave its frequency can either in-
crease or decrease depending on the phase of the interaction.
The increase of the pulse frequency has received considerable at-
tention [71, 33, 72, 73]. The frequency increase of the laser pulse
comoving with wake wave is known as the photon acceleration.

2.5.1. Photon accelerator

In order to write the equations for the motion of a probe
wave packet we refer to the dispersion equation for the frequency
and the wavenumber of an electromagnetic wave, w? = k2¢% +
Q2(X), with X = z—uvpnt where vpn = cfp is the phase velocity
of the wake wave and the dependence of wpe on vy, is due to the
fact that the wake wave (it is assumed to be given) modulates
the local value of the Langmuir frequency. In the geometrical
optics approximation, the wave packet motion is described in
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the framework of the Hamiltonian formalism [64]:

dk oM dX _9H

& - Tax  dt - ok (2.29)
with the Hamiltonian
H(k, X) = (K2 +2(X)]"” = kupn. (2.30)

Rewriting the Hamiltonian in terms of the frequency of the probe
laser pulse, we obtain

’H[k(w),X] =w — Bpn [w2 - wge(X)] "2 _ constant. (2.31)

From these equations we find that the frequency of a comoving
laser pulse changes from wy, before the interaction, to

hn 2 wpe [2(1 = Bn)] (2.32)

after the interaction.

2.5.2. Frequency increase during the interaction with a
counterpropagating nonlinear Langmuir wave

The interaction of a probe laser pulse with a counterprop-
agating “wake field” corresponds to the reflection of light at a
mirror moving with a relativistic velocity V. As is well known
(see detailed discussion in Ref. [74]) the frequency of the reflected
light is
— w8

1-p
where § = V/c. For B~ 1 and wy > wpe, whn is significantly
larger than the frequency given by expression (2.32).

This relativistic “effective mirror” can be formed during
the breaking of the Langmuir wake wave that propagates in a
plasma with a phase velocity close to the speed of light in vacu-
um. In a nonlinear Langmuir wave near the breaking threshold,
when the electron quiver velocity vg approaches the phase ve-

Win (2.33)
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locity of the wave, the dependence of the electron density on the
coordinate X = z — wvp,t is given by (1.18). The distribution of
the electron density (1.18) corresponds to an integrable singular-
ity [i.e., [Ty n(X)dX # oo]. However, it breaks the geometrical
optics approximation and leads to the reflection of a portion of
the laser pulse in the backward direction and to the increase of
the frequency of the reflected pulse.

In order to calculate the reflected radiation, we consider
the interaction of an electromagnetic wave with the spike of elec-
tron density formed in a breaking Langmuir wave (1.18). The
electromagnetic wave, given by the z-component of the vector
potential A,(z,y,t), is described by the wave equation

4me?
OuA: — & (BezA: + Oy As) + T n(z — upnt) A, =0, (2.34)

where the electron Lorentz factor 7 near the maximum of the
density n(X) is equal to ypp.

In the reference frame moving with the phase velocity of
the Langmuir wave we write the vector potential in the form

A, = [Aoexp(—ik,z') + Ap(z)] exp | - i(w't' — kyy)], (2.35)

where Ay and Apr correspond to the incident and reflected
waves, and x',t and k',o’ are the coordinates and time and
the wave vector and frequency in the boosted frame.

From equation (2.34) we obtain for the reflected wave

d?Ar 5,
dr? ¢A4AR= 1)2/3

where g2 = k3, — (//c)? and g = (2/9)/% k23 2.

Assuming W > Wpe, Which is equlvalent to kplk: < 1,
and considering the first term in the brackets in the right hand
side of equation (2.36) to be much smaller than the second term,
we find the reflected wave:
4/3

g
—_— 2.
AR q(q + kl)l/3P ( ) AO exp(qu )’ ( 37)

where I'(z) is the gamma function.

[Ar + Agexp(-ikjz)],  (2.36)
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Performing the inverse Lorentz transformation, we obtain
that in the case of normal incidence (k, = 0) the frequency of
the reflected wave is equal to wp = wo(1 + Bpn)/(1 — Bon), in
agreement with the expression for the frequency change after
a reflection at a relativistic countermoving mirror (2.33). The
wave amplitude (the electric field) is increased by the factor
2 (k2vpn/k2)?/3T'(2/3)/9'/3. The length of the reflected pulse is
4%, times shorter than the length of the incident pulse. This
opens a way for the generation of very short laser pulses.

If the Langmuir wave is generated by a laser pulse with
carrier frequency w > wp, the ratio of the intensity of the re-
flected and incident wave is Ip/Iy ~ (wwpe/wd)*/3.

3. Filamentation of the laser light and
magnetic interaction of filaments of
electromagnetic radiation

An external magnetic field affects the propagation of elec-
tromagnetic waves in media. However, in the relativistic range of
amplitudes of the laser radiation the magnetic field produced by
the laser beam itself changes the pattern of the beam interaction
with the plasma. In Ref. [34] the importance of the long-range
magnetic interaction was stressed for the first time and shown to
lead to the merging of the long self-focusing channels produced
by the pulse filamentation. In Ref. [34] this phenomenon was
called “magnetic interaction of self focused channels.” Regard-
ing the magnetic interaction of self-focused channels we observe
that the merging of the self-focusing channels and the associat-
ed self generated magnetic field were already seen in the 2D PIC
simulations presented in Ref. [82]. The physical mechanism of
the merging due to the attraction of the electric currents inside
the filaments, and the subsequent change of the refractive in-
dex due to relativistic electron redistribution, was formulated in
Ref. [34]. This mechanism was later called “magnetic lensing”
or “electron pinching” and discussed in many papers 1nclud1ng
Refs. [83-85].
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3.1. Generation of quasi-static magnetic field

The problem of the production of superstrong quasi-static
magnetic fields in a laser plasma has been studied extensively
over many years. These magnetic fields are observed in laser
produced plasmas [86, 87] and can affect the thermal conduc-
tivity and the long time range plasma dynamics [88]. Several
mechanisms of magnetic field generation are discussed in the lit-
erature, including baroclinic effects [89, 90], anisotropic electron
pressure [91], spatial nonuniformity or time variation of the pon-
deromotive force [92] inverse Faraday effect in a circularly polar-
ized pulse [93, 94], nonlinear processes in plasma waves [95] and
the effect of the current produced by the electrons accelerated
inside the self-focusing channels of the electromagnetic radiation
[34]. In the latter case plasma quasineutrality requires that the
fast-electron current be canceled by a cold electron current of op-
posite sign. These oppositely directed currents repel each other.
This repulsion and the increase in the magnetic field value are
the manifestation of the current filamentation instability [96].
Due to symmetry of the laser pulses, the quasi-static magnetic
field reverses its sign at the laser beam axis. As a result it can
focus charged particles, e.g., fast particles in a Laser Particle
Accelerator [2, 97]. In addition, in the Fast Ignitor concept of
ICF [4], the quasi-static magnetic field is expected to collimate
superthermal electrons and to provide the energy transfer from
the relatively low plasma density region where these electrons
are produced by the laser pulse to the overdense plasma in the
high-density core where they ignite the fuel [97].

3.2. Merging of the filaments

The results of the 3D PIC simulations shown in Fig. 1
show that the separate filaments, which are formed when a suffi-
ciently wide laser beam splits, attract each other and eventually
merge into a well defined channel, as demonstrated in the 2D
case in Ref. [34]. The self-generated magnetic field is shown in
frame (b). We see its structure corresponding to the electric cur-
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rent inside the filaments in the rear part and inside the channel.
Due to the repulsion of oppositely directed currents, the return
current that shields the magnetic field flows in a much wider re-
gion. This makes the magnetic interaction long-range. Acting on
the electric current of a neighboring channel, the magnetic field
changes the relativistic electron distribution and this affects the
refractive index and finally the direction of propagation of the
channel.

In order to estimate the strength of the magnetic field, we
note that the velocity of the current-carrying electrons is limited
by the speed of light ¢ and write the channel radius as.[34]
R = a'/%d,, where d. = c/w,e. We obtain

B = a?mewpec/e, (3.1)

which is of order 10* —10%T for typical values of the parameters.

In order to test the hypothesis of the magnetic interaction,
in Refs. [34] the propagation of a beam in a plasma embedded
in a magnetic field perpendicular to the beam was simulated. A
deflection of the beam, consistent with the relative orientation
of the external magnetic field and the electron current in the
channel, was shown. The magnetic interaction mainly affects
the leading part of the pulse.

3.3. Electron vortices

A laser pulse of finite length and width and very high
intensity, propagating in underdense plasmas is subject to rela-
tivistic self-focusing and can propagate in the shape of a short,
narrow “bullet” [18]. Such a laser pulse produces a quasistatic
magnetic field wake in an initially unmagnetized plasma and the
corresponding electron fluid motion takes the form of a vortex
row [98, 99]. The vortex row is shown in Fig. 3.1. Near the laser
pulse this vortex row is symmetrical, but it is unstable against
bending and is transformed into an antisymmetric configuration.
The distance between the vortices is comparable to, or in their
final stage even larger than, the collisionless skin depth. The
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Fig. 3.1. Magnetic wake field generated by an
ultrashort laser pulse in an underdense plasma.

vortex row moves as a whole in the direction of the laser pulse
propagation with a velocity much smaller than the pulse group
velocity. The velocity of the vortex row decreases with increasing
distance between the vortex chains that form the row.

In order to investigate the bending instability of the finite
width current-sheet that has been observed in the PIC simula-
tions, we refer to the electron fluid momentum equation (1.3)
in the absence of charge separation and in the non relativistic
limit, and invoke the freezing of the z-component of the rotation
of the generalized momentum V X [p —(e/ c)A] in the electron

fluid [100]. Since their motion is slow compared to the Lang-
muir time and their velocity is much smaller than speed of light
¢, the electron fluid can be regarded as incompressible and non
relativistic. This leads to the following relationship between the
electron velocity and the magnpetic field: v = —(c/4men)V x B;
so that, taking B to be along the z-axis, B = e, B, we obtain

(8/0t+e.x VB-V) (AB - B) =0, (3.2)

where the time and space units are  wp, = a”(w/wZ,), and
¢/wpe. Equation (3.2) is known as the Hasegawa-Mima (HM)
equation in the limit of zero drift velocity [101].
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As is well known (see [102, 103]) equation (3.2) has a dis-
crete vortex solution for which the generalized vorticity is local-
ized at the points r =r;:

QzAB—BzZFjé[r—rj(t)]. (3.3)

Here I'; are constants and r = (z,y). Then we have [104]
B=3_ B, B;[r,xj(t)] = —([;/20) Ko It - m3()] |- (3.4)
j

Here and below K, (€) are modified Bessel functions. The curves
r;(t) are determined by the characteristics

i’j =e,x V- ZBk[rj(t), l’k(t)]
k#j

of equation (3.2). From these expressions the equation of motion
of the vortices follows

'=——§:P Y K1 (rix)y %5 = —ZPk Kl("]k)
T k#; Tik T k#; Tik
(3.5)
where 7 = |r; — re| = [(z; — zk)? + (y; — ye)}/2. We will
assume that all vortices have the same absolute amplitude and
take |I'j| = 1.

The vortex configuration seen in Fig. 3.1 corresponds to a
double chain of vortices with opposite signs. In Euler hydrody-
namics a symmetric double chain is unstable while an antisym-
metric chain is stable for a specific set of values of the param-
eters. The problem of the stability of the vortex chain in the
framework of the Hasegawa-Mima equation was solved in Refs.
(98, 99]. In a double chain the oppositely polarized point vortices
have coordinates and amplitudes equal to

) =js+Ut, y)=gq/2, —o<j<+oo, [j=-
for the upper chain, and

x%z(k+a)s+Ut, y,2=—q/2, -0 <k<+4o00, [y=1,
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for the lower chain, respectively. The distance between neigh-
boring vortices in a chain is s, the distance between the chains
in the y-direction is g, and the lower chain is shifted along the
z-direction by os: 0 =0 and o =1/2 correspond to the sym-
metrical and to the antisymmetric configurations respectively.
Here

00 K /
v=12 ) 1(Pk)’ o= [(k+0)232 +q2]1/2 (3.6)

is the global velocity of the double chain in the z-direction.
When s < 1 and ¢ < 1 we recover known results valid for Eu-
ler hydrodynamics [105]: U = (1/2s) coth(mg/s) for o =0 and
U = (1/2s) tanh(rg/s) for o = 1/2. Far from the vortex row the
magnetic field and the electron fluid velocity tend to zero expo-
nentially. For ¢ < 1 this configuration corresponds to an elec-
tron current sheet with thickness ¢ surrounded by two opposite
current sheets with thickness of order one, and is similar to the
configuration observed behind the laser pulse. From equations
(3.5) we can obtain, to the first order in perturbation amplitude,
the linearized equation of motion of the vortices. Looking for
solutions of the form

zj = X exp [7t + i(jw)], Y =Y exp [7t + i(jw)], (3.7)
z, = X'exp [’yt + z’(kgo)], Y = Y exp ['yt + z'(kgo)], (3.8)
for the perturbations of the coordinates of vortices from the up-
per and the lower chain, respectively, we find the dispersion rela-

tion which gives the relationship between the real and imaginary
parts of v and ¢ :

v= % kf: (k—+,;)ﬂ K»(p}) sin[(k + 0)¢]
=0

:l:% {— f: %Jp’) [1 - cos(jcp)]

j=1
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N i [Kl (Ph) g Kz(pk)] [1+scos[(k+0)¢]] }

per S o
k+0’ Kl
RN N

Ki(p)) 1/2
+E [—l—p’— = Kz(Pj)] [1- COS(i‘P)]} : (3.9)
=1L Pj

where ¢ = +1 depends on the parity of the perturbation. The
symmetrical, o = 0, vortex row is always unstable. In the limit
§ € ¢<1 and ¢ < 2ws/p < 1, we recover Rayleigh’s result
for the growth rate

Re(7) = U (qp)"/*s73/* = kU (rq)"/? (3.10)

of the bending instability of a finite width, fluid stream [105].
When the perturbation wavelength is larger than one and ¢ (¢ <
1 < 2ms/yp), we can estimate the instability growth rate as

Re(v) = k2 U (kq)*/2. (3.11)

If the distance between neighboring vortices is larger than one,
s > 1, the growth rate is exponentially small. In the case of the
antisymmetric vortex row with ¢ = 1/2 we expect the perturba-
tions to have more complicated behavior than the symmetrical
configuration. As noted in Lamb’s monograph [105], in standard
hydrodynamics the antisymmetric von Karman’s vortex row is
stable for ¢/s =~ 0.281. In the hydrodynamic case a point vortex
is described by (I';/27)In|r — r;(t)| instead of the expression
(3.4) which involves the Bessel function Ko(|r — r;(t)|). By di-
rect inspection of equation (3.9) we see that for large distances
between neighboring vortices the antisymmetric vortex row is
stable when
s/2 < ¢ < 35%/4. (3.12)
The dependence of the growth rate on ¢ and s is shown in
Fig. 3.2 for the antisymmetric vortex row described in the frame-
work of standard hydrodynamics, (a), and in the framework of
the Hasegawa—Mima equation, (b).
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Fig. 3.2. Dependence of the growth rate on ¢ and
s for the antisymmetric vortex row described in the
framework of standard hydrodynamics, (a) and in
the framework of the Hasegawa-Mima equation,

(b).

We note here that we have investigated the stability prob-
lem in the linear approximation. As is well known, the stability
of Hamiltonian systems in the linear approximation is always
marginal because asymptotic stability cannot be reached. In
other words, the condition Re{w} = 0 indicates that a more
detailed analysis of the vortex behavior is necessary, since non-
linear or dissipative effects may drive an instability. A nonlinear
analysis of the stability of antisymmetric vortex rows was per-
formed in Ref. [99] for the parameters in the domain of the linear
stability given by expression (3.12). It was shown that the anti-
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symmetric vortex row is also stable nonlinearly (in terms of the
Lyapunov stability).

3.4. Hole boring and ion acceleration by a petawatt
laser pulse in underdense plasmas

When a short laser pulse in the terawatt power range in-
teracts with an underdense plasma, ions are usually assumed
to be immovable because of the large ion to electron mass ra-
tio m;/m.. The dimensionless amplitude of the laser radiation
calculated with the ion mass, eE/mjwc, becomes of order one,
i.e., the ion quiver velocity equals the speed of light, when I =
4.5 x 10®*Wem™2 for 1 um laser in hydrogen plasmas which is
well above the typical values of petawatt lasers. However, as we
show below, the ion motion becomes relativistic for more mod-
erate intensities, I ~ 2.5 x 102! Wcm™2, which correspond to
laser pulse powers in the petawatt range and to amplitudes [75)
of order u!/2, where u = m;/m,. An electron interacting with a
plane electromagnetic wave of such intensity acquires an energy
equal to & = m.c?a?/2 according to equation (4). This means
that electrons become as heavy as ions. In addition, as shown in
Section 2.1., a short laser pulse generates a plasma wake wave
with amplitude ¢ = &, /e, where ¢ is the electrostatic potential.
Thus, for a ~ p!/? the ions gain the energy m;c? during half a
period of the wake wave.

The acceleration of ions during the interaction of super
intense laser pulses with matter has important theoretical im-
plications for the understanding of the nonlinear dynamics of a
relativistic plasma and for practical applications ranging from
laser induced nuclear reactions, compact neutron sources and
ion injection into conventional accelerators, to hadrontherapy in
medicine [7]. Multi-MeV fast ions created by ultra-short laser
pulses have been observed in Ref. [76] in an underdense plasma
irradiated by a 50 TW laser. High energy ions were considered
in [77] in order to explain the neutron production in the case
of solid targets irradiated by the laser light. The acceleration
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mechanism invoked in [76] and [78] to explain the ion produc-
tion is the so called “Coulomb explosion.” In these papers it
is associated with the break of the plasma quasineutrality when
the electrons are expelled from the self-focusing radiation chan-
nel in the plasma and the ions expand due to the repulsion of
the noncompensated electrical charge. The typical energy of the
fast ions was calculated by balancing the force due to charge sep-
aration [Ag = 4me(n; — n.)| with the ponderomotive force of
the laser radiation on the electrons [F = —m.c?V (1 + a?)'/?].
Thus, the ion energy is proportional to the ponderomotive po-
tential and scales as m.c?a for a > 1. In these estimates it
is implied that the laser-plasma interaction is adiabatic on the
electron time scale and that the response of ions is much slower.

In the regime of non adiabatic interaction of the laser pulse
with the plasma the ion acceleration is more effective and the
ion energy scales as m.c?a®. To reach such a regime of effective
ion acceleration laser pulses are required in the petawatt power
range, as we have discussed above.

Figure 3.3 shows the results of 2D PIC simulations of the
interaction of a laser pulse with a slab of underdense plasma
of length 150). The ion to electron mass ratio is 1840, which
corresponds to (m;/m.)!/? = 43 (see also [79]). The laser pulse
is circularly polarized, with amplitude a = 50, and is Gaussian
along y with full width {; = 10A. It has a triangular form along
z with length [ = 20\ and a sharp front =~ 2. The plasma
density corresponds to wpe/w = 0.45.

The z,y-distribution at ¢t = 160(27/w) of the electron
(a) and ion (b) densities in Fig. 3.3 show that the laser pulse,
still inside the plasma slab, is focused in a relatively small region
due to relativistic self-focusing. In frame (c) at the head of the
channel we see the region where quasineutrality is broken, which
in turn creates a strong z-component of the electric field with
alternating signs which accelerates both ions and electrons in the
forward direction. Both electrons and ions are expelled in the
transverse direction, but the channel behind the laser pulse is not
totally evacuated. The plasma moves predominantly outward in
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Fig. 3.3. The z,y-distribution of the electron,
(a), and ion, (b), densities; (c) z-component of
the electric field; (d) z-component of the magnetic
field at t = 160(27/w).

the radial direction, but at the same time an “inverted” corona
made of a hot, inward expanding plasma is formed. These hot
plasma flows converge on the channel axis and form a relatively
dense plasma filament in the region 110A < z < 140A. This
“inverted” corona and the formation of a hot filament inside the
channel were discussed in Ref. [80] in a gas-dynamical framework.
The electric current carried by the filament sustains a dipolar
magnetic field, shown in Fig. 3.3d, along the z-axis which in
turn focuses the plasma towards the channel axis.

Figure 3.4 illustrates the ion acceleration mechanism af-
ter the laser pulse has drilled a hole through the underdense
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Fig. 3.4. (a) Phase planes (pze,z) of electrons;
phase planes pgi,z and (pg,y) of ions, (b) and (c),
respectively; and (d) the z,y-distribution of the z-
component of the magnetic field at ¢ = 220(27/w)
in the vicinity of the channel end.

plasma slab. The electron cloud expands into the vacuum re-
gion in the forward direction and, as seen in the phase planes in
Fig. 3.4a, b, the electron energy decreases (nevertheless it is well
above mec?a?/2 because of the increase of the laser amplitude
due to self-focusing) while ions are accelerated up to relativistic
energies. The ion phase plane (p;,y) in Fig. 3.4c shows that
the ion motion is well collimated. This collimation can be ex-
plained by the pinching in the self-generated magnetic field which
changes polarity at the ion jet axis as seen in Fig. 3.4d in the
region 165 < z < 180 near the laser pulse axis.
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Fig. 3.5. Formation of a channel in the ion den-
sity in the 3D plasma slab at ¢t = 30(27/w) when
the pulse has just bored through the plasma: pro-
jection on the horizontal z,y-plane at z =0, (a),
and on the transverse y, z-plane at £ = 15, (b).

The 2D approximation can overestimate the ion accelera-
tion outside the channel. This is due to the slower decrease with
distance of the accelerating electrostatic field in two dimensions
in comparison with the real three dimensional case.

In order to evaluate the accelerated ion energy, we present
the results of 3D simulations with a plasma slab 15X long [81].
The formation of the channel in the ion density in the 3D plasma
slab is shown in Fig. 3.5 at ¢t = 30 (27 /w) when the pulse has just
bored through the plasma. The channel is projected on the hori-
zontal z,y plane at z = 0, frame (a), and on the transverse y, z
plane at =z = 15), frame (b). The circularly polarized pulse has
carved a staircase structure which resembles the helical chamber
inside a shell. The expansion and acceleration of the ions in the
vacuum region, when the pulse has drilled a hole through the
slab, is shown in Fig. 3.6 at ¢t = 48 (2n/w). The z,y section at
z = 0 of the ion density distribution shows a strongly collimated
beam along the z axis (frame a). This beam collimation is also
seen in the 3D plot (frame b) where the isosurface corresponding
to n; = 1.8 is shown. As expected, the ion acceleration is small-
er in 3D (the maximum value of the ion longitudinal momentum
at t =48 (27 /w) is P, = 0.61 (Fig. 3.7).
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Fig. 3.6. Expansion and acceleration of ions in the
vacuum region when the pulse has drilled a hole
through the slab at ¢t = 48(2r/w). (a) The =,y
section at 2 = 0 of the ion density distribution.
(b) The isosurface corresponding to n; = 1.8.

The mechanisms that accelerate the ions can be described
by invoking the pull on the ions by the electrons that are ex-
panding in the forward direction, the Coulomb repulsion in the
electrically non neutral ion cloud that is formed when the elec-
trons are ripped away by the ponderomotive pressure of the laser
radiation, and the inductive electric field generated by the fast
change of the magnetic field during the expansion of the magne-
tized plasma cloud.

3.4.1. Anisotropic Coulomb ezplosion as a mechanism of ion
acceleration

We note that, when the high energy cloud appears at the
end of the channel, the electrons expand in vacuum faster than
the ions. Thus an ion cloud forms with a non-compensated elec-
tric charge. Here we discuss the dynamics of this ion cloud with-
in the framework of a simplified model which assumes spherical
symmetry.

We write the continuity equation for the density of fast
ions, n;(r,t), as

i + 1720, (r2n,~v,.) =0. (3.13)
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Fig. 3.7. Phase plane (p;,z) of ions.

This equation must be solved with the boundary condition
Py, =G at r=0, (3.14)

which corresponds to a point source of ions with intensity G
at the origin and models the ion flux out of the channel into
the vacuum region. The equation of motion, together with the
equation for the electric field, reads

Op, + v,0,p, = eE, (3.15)
r‘26r(r2E) = 4men;. (3.16)

Substituting the expression for the ion density obtained from

equation (3.16) into equation (3.13), multiplying by 72 and in-
tegrating with respect to 7, we obtain
at(r2E') + .0, (rzE) = 47eG. (3.17)

Solving equations (3.15) and (3.17) with the method of charac-
teristics, we obtain the equations for the characteristics in the
form

0, (r2E) = 4meG, (3.18)
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Opr = eFE, (3.19)
or = cp,(mfc2+pf)_l/2. (3.20)

We obtain that the ion energy increases as

2/3
2_1/3(671'62.]772,'1/2 lnr) " for pr L myc

gi =
Are®G ln(r/c) for p, > myc

(3.21)

Estimating the ion flux at the end of the channel as G =
mR?n;v; in the nonrelativistic case, with v; the velocity of the
ions at the channel end, and G = wR?n;c in the relativistic
case (R is the channel radius) we can obtain that the typical
ion energy is equal to & ~ 4mn;e?R?* ~ m.c*(R/d,.)? in the
relativistic case.

Indeed, in the real configuration the Coulomb explosion
is not spherically symmetric, nevertheless equation (3.21) gives
the correct order of magnitude of the energy of the fast ions.

4. Relativistic solitons

Among nonlinear modes, solitons are of fundamental im-
portance for basic nonlinear science. In Refs. [106, 107] fast
solitons propagating in a plasma with group velocity close to
the speed of light were invoked as a tool for particle and photon
acceleration. Nonlinear one-dimensional (1D) relativistic soli-
tons have been studied analytically [107-111], and numerically
[32, 111, 112]. 2D subcycle solitons have been found with PIC
simulations in Refs. [113-115).

4.1. Envelope and sub-cycle circularly polarized
solitons

We refer to the relativistic electron equations (1.1)-(1.3),
assume the electromagnetic wave to be circularly polarized, in-
troduce the new coordinates X = z —v,t, and 7 = t, and look
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for solutions of the form:

A = Ay +id, = AX) exp {iw [(1 - ))r —v,X]}, (41)

Py = mecBsb(X). (4.2)

Inserting expressions (4.1) and (4.2) into (1.5)—(1.8) and assum-
ing the ion density to be homogeneous we obtain

n b

(v-8%) = % (4.3)
2 2

d'+%a = k§7—7i_a—b, (4.4)

where v = (1+a?+ B20%)"%, v, = 1= B2, B = v/,
kp = wpe/c and a prime denotes differentiation with respect to
the variable X. We see that equation (4.3) differs from equation
(1.11), that describes propagating electromagnetic waves in the
framework of the Akhiezer—Polovin approach, by the second term
in the left hand side of equation (4.3). The system of equations
(4.3) and (4.4) has an integral, which can be written in the form
(109, 107]

ey {1+6-8 [0+ ¢ -1+ a) ]}

MO

4.
2v2 2 c? 273 (45)

This integral corresponds to the Hamiltonian for the motion of
a particle in a two dimensional potential field. The particle has
anisotropic mass which is negative in the ¢-direction.

The system of equations (4.3, 4.4), with boundary condi-
tions a(oo) = b(c0) =0, a(X) <o0o, b(X) < oo, describes a
one-dimensional relativistic electromagnetic soliton propagating
through a cold collisionless plasma. The soliton speed and fre-
quency are less than the speed of light and the electron plasma
frequency: 3, <1 and w < wpe. In the limit of a small but finite-
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amplitude, the soliton solution is described by the well known
hyperbolic secant expression [109, 107]:

[1 — (w/wpes) ]l exp {zw [(1 - BT - v,X/cz)]}
cosh {k2 [1 — (w/wpes) ]1/2}

with frequency w = wpeys(1 — a2,/8), where a,, is the soliton
amplitude. This solution corresponds to an isolated envelope
soliton.

Another exact solution can be found in the limit of a soli-
ton with zero propagation velocity. In the case 8, = 0, b
vanishes and the system of equations (4.3, 4.4) reduces to

2
1+ k2y"
a' +k [(w) —:—pl}a=0. (4.7)

(4.6)

Wpe Y

With the help of the substitution ¢ = sinhu, 7y = coshu, this
equation can be cast into the form

u" = k sinhu [1 ~ (w/wpe)? cosh u] (4.8)
which has an integral
—(u — k2 [(coshu —1) = (w/wpe)? smh2u] h. (4.9)

For h = 0 we obtain a soliton solution of the form [111] (see also
Ref. [116], where relativistic self-focusing is discussed):

2 ( Whe — W )1/2 cosh [(X/ c) (w:e - wz) 1/2] eXp(iw'r)
cosh? [(x/) (w, - w?) | e -,

a(X,7) =

(4.10)
The relationship between the soliton amplitude ap,, which is
equal to am = a(0,0), and the soliton frequency w is given by

1/2
m = 2Wpe (wf,e - wz) 2 (4.11)
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4.2. Relativistic subcycle solitons in the 2D case

In order to describe the structure of two-dimensional soli-
tons, we assume that their propagation speed is zero, and con-
sider cylindrically symmetric configurations, where all variables
depend on the r coordinate. We use the equations of motion
for a cold electron fluid together with Maxwell’s equations. The
2z component of the electric field oscillates in time while the
electron density distribution remains constant. We call the soli-
tons with an oscillating z component of the electric field s-
polarized solitons or simply s-solitons. The radial component
of the ponderomotive force (j x B), which leads to the density
redistribution, is balanced by the electric force due to the charge
separation. Then, the normalized electron density is

n(r) = ng [1 + kAL <(1 + a2)1/2>] , (4.12)

where A, = r18,70,. Assuming that the time dependence of
the vector potential has the form a(r) exp[—i(wpe —&u)t] , in the
limit of weak nonlinearity a < 1, we find

Aja— k2 |20w/wpe — |al*/4]| a = 0, (4.13)
P p

where éw is the nonlinear frequency shift. The properties of
this equation are well known in the theory of self-focusing [51]
and wave collapse [117). It describes localized 2D solitons with
frequency shift dw and radius o which depend on the soliton
amplitude as dw ~ a? and 1y ~ 1/a. This scaling agrees with the
dependence of the frequency on the soliton amplitude in the case
of a planar circularly polarized 1-D soliton w = (wpe/a){2(1 +
a?)1/2 _ 9]/2 which follows from equation (4.11).

We call solitons with an azimuthal electric field and a mag-
netic field directed along the z-axis p-polarized solitons or sim-
ply p-solitons. '

In addition to the s- and p-polarized solitons, we have
coupled solitons with mixed s- and p-polarization. We describe
the observed structure of these solitons along the line we used to-
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obtain equation (4.13) and assume that their propagation speed
is zero. The dependence of the vector potential on time and on
coordinates has the form a(r, ¢) exp [—z’(wpe - éw)t] , where dw
is the nonlinear frequency shift. In the limit a < 1 of weak
nonlinearity we find

] 1
2 2 2 —
Aa, -k, [2w—pe -1 (|az| + |ay| )] a, = 0, (4.14)

1 2 5(4) 1 2 2
(8- ) o= 222 (ol + 1) 0 = 0. (419
for the 2- and p-components of the vector potential, that cor-
responds to s- and p-modes respectively. We look for solutions
where a, = a(r) depends only on 7 while a, is of the form

a,(r, ) = €5 a(r) cos(¢p), (4.16)

with €, a small proportionality constant €, < 1. Neglecting
la.|? compared with |a,|? in equations (4.14) and (4.15), we
obtain the same equation for the amplitude a(r)

(r-la,ra, - r‘z) a—k [25w/wpe - |a|2/4] a=0. (4.17)

As discussed above, equation (4.17) describes localized 2D soli-
tons, their width ry and frequency shift dw depending on the
soliton amplitude.

In the three dimensional case the analog of the s-solitons
(p-solitons) are the TE-solitons (TM-solitons). The mixed TE-
TM mode corresponds to a toroidal soliton with orthogonal mag-
netic and electric field lines wound on the surface of a torus.

4.3. 2D and 3D PIC simulations of soliton
generation

The study of relativistic solitons with the help of 2D PIC
simulations has shown that they are formed during the laser
pulse plasma interaction [113-115]. The typical regime of soliton
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Fig. 4.1. Solitons in the z,y plane behind a pulse
with amplitude a = 3, width 5\, and length 10X
in a plasma with n/n¢ = 0.2025 at wt/27 =120

(27 /w). (a) Distribution of the square root of the
e.m. energy density in the z,y-plane. (b) electron
density marking the solitons.

generation is shown in Fig. 4.1, where the results of 2D PIC
simulations are presented. The dimensionless amplitude of the
laser radiation is @ = 3. The laser pulse has a Gaussian form
both in the z and y directions, with full width /[, = 5A and
length ; = 12), and is linearly s-polarized with its incident
electric field along the z-axis. The ions are assumed to be fixed.
The plasma density is 1y = 0.20257,;.

The distribution of the square root of the electromagnet-
ic energy density, W(z,y) = (E? + B2?)/8m, in the z,y plane
at t = 120(27/w) is shown in Fig. 4.1a. In the region 80 <
z/A < 100 we see that the form of the pulse has changed due to
self-focusing and energy depletion. Behind the pulse about ten
spots of high electromagnetic energy density are seen, which we
identify as solitons. Their propagation velocity is much smaller
than the group velocity of the laser light, as shown by the soli-
tary wave which remains at z =~ 14\, y = 1\ for about 135
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Fig. 4.2. (a) Reconstruction of the z-component
of the electric field of the s-polarized solitary wave.
(b) Density contours and the vector plot of the
magnetic field in the z,y-plane. (c) Time depen-
dence of the maximum positive and negative values
of the momentum along z of the electrons inside
the solitary wave.

laser periods. In frame (b) the distribution of the electron den-
sity is presented. We see a low density region corresponding to
the laser pulse position and additional low density regions corre-
sponding to the solitary waves. From these numerical results we
see that the typical size of the solitary waves is = 2 to 4), i.e.,
comparable to the Langmuir wavelength, A\, = c/wpe = 2.2).
The time dependence of the z component of the electric field
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inside the solitary waves shows oscillations with a period = 3 to
4 times the laser pulse period which is longer than the period of
the Langmuir wave 27/wpe. In Figure 4.2 the reconstruction of
the z component of the electric field of the s-polarized solitary
wave of Fig. 4.1a at ¢ =~ 20\, y & —14) is shown in frame
(a) at ¢ = 106(2m/w). In frame (b) we see the corresponding
density contours and the vector plot of the magnetic field in the
z,y-plane at ¢t = 105. In frame (c) the time dependence of the
maximum positive and negative values of the momentum along
z of the electrons inside the solitary wave is shown.

m ‘A

20 ' .
5 0

10 20
5 10 t=1425

Fig. 4.3. 3-D soliton behind the laser pulse. Sur-
faces of constant value of the electric field (|JE| =
0.2), (a), of the magnetic field (|B| = 0.2), (b),
and of the electron density (n = 0.16 n), (c).

In Figure 4.3 we present the results of 3D PIC simulations.
The laser pulse amplitude is a = 2.1, its width is [, = 7], its
length is {j = 2, and it is circularly polarized. The ions are
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assumed to be fixed. The plasma density is ng = 0.16n. In
Figure 4.3a, we show the surfaces of constant absolute value of
the electric field (JE| = 0.2), in frame (b) those of the magnetic
field (|B| =0.2), and in frame (c) those of the electron density
(n = 0.16n¢). A soliton, with amplitude ~ 0.7, is localized near
the pulse axis at £ = 15A. It has a toroidal form and oscillates
with a frequency below the Langmuir frequency.

4.4. Influence of plasma inhomogeneity

In a non-uniform plasma the propagation of a wave is
strongly affected by the inhomogeneity of the medium. In a
non-uniform dispersive medium a wave packet moves according
to the geometric optics equations (2.29 ), where the Hamiltonian
is the wave frequency H(z;, k;) = w. From these equations we
find that the wave packet acceleration is equal to

dc,  O*H OH  OPH OH

=— —. 4.1
dt2 3]913]6] 3.’1,']' + 3]61'3.’1,']‘ 3]9] ( 8)
For an electromagnetic wave in a plasma we have
Hwi k) = [+l = w. (4.19)

In the case of the plasma density distribution given by n =
o [1 +z/L; + y2/2L§] we obtain

i=—c*/2L,, §j+cly/LZ=0. (4.20)

The acceleration of the wave packet is directed towards
the low density side and oscillates in the transverse direction.
As a result, the soliton will move to the plasma vacuum in-
terface, where it will radiate away its energy in the form of low
frequency electromagnetic waves, in the process of non-adiabatic
interaction with the plasma boundary.

In the case where a laser pulse propagates in a plasma in-
homogeneous in the transverse direction, the soliton propagates
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Fig. 4.4. (a) z-component of the electric field in
the z,y plane during the interaction of a circularly
polarized laser beam with a plasma inhomogeneous
in the y-direction direction. (b) Quasi-static mag-
netic field. (c) Electron density.

in the direction perpendicular to the laser beam and abandons
the region behind the laser pulse, where the wake field and elec-
tron vortices are localized. As a result, the soliton is less per-
turbed by nonlinear plasma waves, vortices and fast particles.
Figure 4.4 shows the 2D PIC simulation of the interaction of a
circularly polarized pulse with an underdense plasma. The inci-
dent laser pulse propagates along the z-direction. The pulse
dimensionless amplitude in the vacuum region is a = 3, its
width is I} = 16X and its length [ = 4). The plasma den-
sity varies from n = 0 at the plasma vacuum interface at y =0
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to n = 0.6n.,, at y = 60A. The ions are assumed to be at rest.
In Figure 4.4 the z-component of the electric field is presented
in the first column, the z-component of the magnetic field in
the second column and the electron density in the third column.
The upper row corresponds to ¢ = 50(27/w), the middle row to
t = 100(27/w), and the lower row to ¢t = 150(27/w).

In the evolution of the z-component of the electric field we
see the refraction of the laser pulse and the accelerated motion
of the soliton due to the plasma inhomogeneity. The s-polarized
soliton formed at z = 35, y = 29 moves along y towards the
plasma-vacuum interface. When the soliton reaches the plasma-
vacuum interface it disappears suddenly and is transformed into
a diverging electromagnetic wave.

The pattern of the wake waves generated by the laser pulse
is seen very clearly in the electron density evolution. The wake
wave breaking in the transverse direction discussed in Ref. [70]
results in the appearance of bunches of fast electrons propagat-
ing at a finite angle with respect to the laser pulse axis. Each
electron bunch excites wake plasma waves. There is a strong
depression of the electron density inside the soliton, due to the
ponderomotive pressure of the trapped radiation. The shape of
the soliton changes as it moves towards the low density region.
We also see local depressions of the electron density inside the
electron vortices, both in the magnetic wake behind the laser
pulse and behind the soliton. The pattern of the magnetic field
B, has a two ribbon structure of opposite polarity behind the
laser pulse. A magnetic wake is also formed behind the soliton:
this indicates that the structure of the nonlinear electromagnetic
wave packet, which would correspond to a soliton in a homoge-
neous plasma, is changing. Rigorously speaking, since the non-
linear packet leaves a magnetic wake behind, it loses its “soliton”
properties. However, since the wake amplitude is comparatively
small, it can be regarded as a perturbation of the soliton. This
wake formation corresponds to the generation of a wake field
and to the acceleration of fast electrons by the soliton breaking
discussed in Ref. [111].
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4.5. Mechanism of soliton generation

The physical mechanism that produces these solitons is
different from the standard process where the nonlinear steepen-
ing of the wave is counterbalanced by the effect of dispersion, and
is based on the frequency decrease of the laser pulse discussed
above (see Section 2.1.) and Refs. [114, 115]). Interacting with
the underdense plasma the laser pulse loses its energy as it gen-
erates electrostatic and magnetostatic wake fields behind it. The
frequency of these fields is much lower than the carrier frequency
of the laser pulse and the laser-plasma interaction is adiabatic.
In this case the number of quanta of the electromagnetic field is
adiabatically conserved. Because of this constraint, the decrease
of the radiation energy must be accompanied by a decrease of
the carrier frequency. On the other hand the group velocity of
the laser pulse decreases as the carrier frequency is decreased
and the pulse group velocity tends to zero at w — wpe. The
pulse depletion length calculated for wide laser pulse is equal to
laept & lp(w/wpe)? [32]. We can show that a narrow laser beam
decays after propagating over the length ~ al,(w/wpe)?. Thus
the depleted portions of the pulse, e.g. inside the lateral fila-
ments, lag behind and convert their energy into soliton energy
with almost zero group velocity.

5. Interaction of an ultrashort, relativistically
strong, laser pulse with an overdense
plasma

The interaction of laser light with an overdense plasma is
of great importance for the problems of ICF both in the frame-
work of the direct and of the indirect drive scheme as well as in
the case of the fast ignition concept. Laser interaction with solid
targets is usually accompanied by high harmonic generation, the
formation of jets of fast ions and electrons as well as the emission
of gamma-rays [118, 119].
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As already noted in the Introduction, one can never ne-
glect the plasma inhomogeneity in an overdense plasma. At a
sharp plasma-vacuum interface the laser radiation can easily ex-
tract the electrons from the plasma and accelerate them towards
the vacuum region. This process, known as “vacuum heating of
the electrons” [36], provides an effective mechanism of anoma-
lous absorption of the laser light. When the plasma has a smooth
density distribution, the Langmuir frequency is a function of the
coordinates wy(r). At a steep plasma-vacuum interface the laser
radiation radiates harmonics due to the so called “oscillating mir-
ror” mechanism or due to the nonlinear motion of the electrons
in the narrow region near the plasma boundary [37]. In the lat-
ter case the processes that occur in the vicinity of the critical
surface, in the region of the plasma resonance where w = wp(r),
play a key role [38].

5.1. Oblique incidence on a non-uniform plasma

Let us consider an electromagnetic wave with carrier fre-
quency w, wave vector k and dimensionless amplitude a. The
wave is obliquely incident on a plasma (located in the region
z > 0 ) and forms an angle @ with respect to the normal to
the plasma surface. In the vacuum region (z < 0) the frequen-
cy w and wave vector k are connected through the dispersion
equation w? = (k2 + kZ), where k, = kcosf, k, = ksind.
Following [120], we perform a Lorentz transformation to the ref-
erence frame K’ moving in the y direction with velocity Vioost-
In the K’ frame, the frequency «’ and the components of the
wave vector k' are

W =yww—kV), ky=ks ky=w(ky—wV/c), (5.1)

where By =Vieost/c and 7w = (1 — By) V2. WhenVigost =
kyc*/w = csinf, the y-component k, of the wave vector is
equal to zero. Thus, in the boosted frame, the electromagnetic
wave propagates only in the z-direction, and the problem under
consideration is reduced to that of the normal incidence of the
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wave on a the plasma, where both ions and electrons move with
velocity —V along the y-direction.

In the K’ frame, the frequency is ' = wcosf and the
wave vector has only one non-zero component: k' = (k.,0,0),
with &, = kcosf. The unperturbed plasma density »n’ in the
K' frame is n' = nyy = n/cosf, where the relativistic factor
v depends on [y = sinf as follows: yy = 1/cosf. Electrons
and ions move in this frame with velocity —Vjeest. In the K’
frame all quantities are taken to depend on the time t' and the
coordinate z = z’ only.

5.2. Small amplitude electromagnetic waves in non-
uniform plasmas

By linearizing the cold plasma fluid equations together
with Maxwell’s equations, we obtain in the K’ frame [37]

d 1 d N w? —w?
dzeé(w,z)dz c%e (W', x)

bez-svE) =0, 62

p
! 1\ 7] 7]
(E, - pvH]) = e (H,-BvE,),  (53)
for p-polarized waves, and
d*E! w'? — wf, ,
I + z E, =0, (5.4)

for s-polarized waves. Here the dielectric constant € (', z) is
equal to €'(w', ) = 1—[w,(z)/w]*(1—B%). In the vacuum region,
where ¢ = 1, E, = 0. From equations (5.2)-(5.4) we see that
the reflection point of the electromagnetic waves occurs where

w? = w? and that, in the case of p-polarized waves, the plasma
2 _

P
resonance point occurs where €'(w',z,) = 0 [i.e., where w

wh(1 = BY)]-

In the vicinity of the resonance point z = z,, where
€(w',z) = (z — z,)/L, H, - BvE; has a logarithmic term (see
Ref. [121])
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H, - BvE, ~ Hp {1 + Bz — z,)? In [5‘2"‘"2(”5 - xr)2l } ,

4c® (1 - B3) 42 (1 - B})
(5.5)
and, from equation(5.3), it follows that the value of
LBvHp
B, pyH] ~ 220 Hn, (5.6)
z -z,

becomes infinite for x — z,. Here the constant H,, is of or-
der Hy/vv if the wave-length is of the order of the scale of the
plasma non-uniformity and, in general, can be found by match-
ing equation (5.5) to the solution of equation (5.2) far from the
resonant region.

5.3. Non-linear plasma dynamics near a sharp
boundary

In order to obtain analytical estimates of the physical pro-
cesses that are involved, we adopt a simplified one-fluid, cold
electron model and compare its results with those of the com-
puter simulation. Instead of the Eulerian coordinates z, t' we
use the Lagrangian variables o and 7, where z = z¢+&(zy, 7),
vy = 06/0t, and €(z,7) is the displacement of the elementary
volume of the electron fluid from the initial position zg.

As is well known, the solution of Poisson’s equations for
the longitudinal electric field E., is

&(zo,7)
E;, = 4me / n;(zo + s) ds, (5.7)
0

where n/(z) = n'(z,0) is the ion density distribution which, in
the present case, is assumed to be given.

If we consider a linear density profile n] = n_ /L, where
the scale-length L of the plasma non-uniformity is chosen such
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that the plasma resonance w' = w,(z,)(1 — §%)/? occurs at
z, = L, E is given by

B +2men!, (zof +&2/2) /L for zo+& >0,

T { ~2men!, z3/L for zo+€<0 (58)

inside the region occupied by the plasma, and outside the plas-
ma, respectively. In the case of a step-like density profile for
which n' = ny for o >0 and n’ =0 for zo < 0, we obtain

E = { +4meng€  for zo+& >0, (5.9)

—4menyzy for o+ € <O0.

Here we consider a linear density profile. Then, we obtain
for the displacement &(zo,7) driven by an electromagnetic wave
with a weakly relativistic amplitude, a = eEy/m.wc < 1, the
equations (37}

0%¢ zo€ | & 0%¢ (o€ *37% _ eHo
oz T (T+ Y52 \5r) 2¢ T ma

sin w’ T,

(5.10)
for o+ & >0, and .

¢ W 2§ |, 0% (93¢ 3’YV eHp
or? oL "oz \or) 22 meys

in the vacuum region where zo + £ < 0. In these equations the
Langmuir frequency depends on the coordinate zy, and the non-
linear terms arise from the plasma non-uniformity, (£2/ 2L) w
and from relativistic effects, (3v%/2c2) (8%€/0r2) (9€/07)*.
obtain these equations we have assumed that the function H] — '
Bv E., is given and is of order Hy/yy. Then, we have expressed
H. as a function of E, and of Hj, we have inserted it into the
expression of the Lorentz force and have used equation (5.8) to
express E. as a function of £ and zo where we have substitut-
ed w? for w(z,)(1 — B}). Furthermore, we have neglected the
change in the electron velocity in the y-direction due to the E
component of the electric field.

5 Sinw'T, (5.11)
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5.4. Plasma resonance

For rg/L < 1, that is for £/L < 1, the plasma resonance
occurs near the point where w? = w?(1— %) [see equations
(5.5), (5.6)]. In this region strong Langmuir oscillations are ex-
cited, leading to a large amplification of the z-component of the
electric field E;, up to values for which saturation effects be-
come important [38, 122]. These effects can be characterized in
terms of a dimensionless parameter S, small compared to unity.
The maximum value of the amplitude of the electric field is ap-
proximately E!. =~ Hy/S, and the width of the region, where
the strong electric field E is localized, is given by Az ~ SL
while the characteristic time of the resonance saturation equals
At' =~ 1/u'S.

In the case of an ultra-short laser pulse, the main mecha-
nisms of resonance saturation are the relativistic detuning of the
oscillations, the self-intersection of the electron trajectories and
the finite duration of the laser pulse. At the initial stage of the
growth, when the amplitude of the electric field is still small, we
can neglect the non-linear terms on the left hand side of equation
(5.10). Then, we find for the displacement £(zo,7) as a function
of To, T,

&(zo,T) A — rel {w’Sin[wPe(xo)T]

H !

p—7 o sin(w T)} ,  (5.12)
where wpe(To) is a function of the Lagrangian coordinate zo:
wpe(Zo) = w'(zo/L)'?, 1 = eHo/meyiw? = eHo/mew?,(2,).
At the resonant point o = 2, = L, where wy(zo) = w', the
amplitude of the oscillation displacement grows linearly with
time as £(zp, 7) & —(rg/2)w'T cosw'r, while the resonance width
decreases with time as 1/7. At time t' ~ 2/w'n!/2, the ampli-
tude of the oscillations becomes equal to the resonance width
Az ~ L(rg/L)"?, the Jacobian |0x/8z,| vanishes and the elec-
tron trajectories start to self-intersect. The maximum oscillation
amplitude is of order &max &~ Az ~ (rgL)'/?, and the dimension-
less parameter S is equal to Sy = (rg/L)"2.
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The relativistic non-linearity leads to a frequency detuning which
is duw'/w' = —(3/8)(yww'&/c)?. Here & is the oscillation amp-
litude. The dependence in the plasma resonance region of this
amplitude on the Lagrangian coordinate zy can be found from
the algebraic equation

& (zo -L 3’)’12@’2{3) =Tg. (5.13)

L 8¢?

We see that for (rg/L)/? < a%3, where a is the dimensionless
amplitude of the pulse (here it is assumed to be small a < 1), the
maximum value of the oscillation amplitude is given by &nay =
re/a*3, the width of the resonance is of the order of a?3L and
the saturation time is At' ~ 1/6w' ~ 1/w'a?3. We also see
that in this regime the nonlinearity arising from the plasma non-
uniformity can be neglected. If the duration At' = (27/w')N, of
the pulse is sufficiently short, the maximum oscillation amplitude
is €max = rEw'At' = 2mrgN,, and the width of the resonance is
Az ~ L/mN,.

Hence, depending of the values of the pulse parameters
under consideration, the dimensionless parameter S is given by

S =max{Sy = (rg/L)"?, Sp = a®*, Sr = 1/7N,}. (5.14)

Here Sy is related to the self-intersection of the electron trajec-
tories, Sg to the relativistic detuning of the frequency and Sr
is due to the finite duration of the pulse.

Figure 5.1 shows the results of computer simulation of the
amplification of the electric field near the plasma resonance. In
these simulations, the value of the amplitude in vacuum of the
electromagnetic wave is a = 0.1, the number of field periods
per pulse is N, = 30, and the plasma non-uniformity length
is L = 50c/w'. The incidence angle of the wave corresponds to
the “optimal” value [38]. In our case, this value is § = 15°.
Under these conditions the maximum amplitude of the electric
field in the plasma resonance region is determined by the rel-
ativistic detuning of the frequency S = Sg = a%3. After the
time Ty, ~ 2L/wpefmax = 2LSr/wpere = 2Sr/Skwpe the elec:
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Fig. 5.1. Electron acceleration in the plasma res-
onance region.

tron trajectories start to self-intersect due to the growth of the
wavenumber of the Langmuir oscillations in a non-uniform plas-
ma. As a result some of the electrons are thrown out of the
resonance region in the direction of decreasing plasma density
because in this region the phase velocity of the Langmuir os-
cillations, vpp = wpe/k & —2L/t' = —wpe€max is Negative. At
this time the velocity of the fast electrons is equal to the phase
velocity of the Langmuir oscillations and their energy gain is
approximately given by eHyLSg/(7vS%): actually, it can even
exceed this value due to a further acceleration in the plasma
wave.

5.5. “Vacuum heating” of the electrons

If 75/L > 1, the electrons in the region near the plasma
boundary are expelled from the plasma into the vacuum region.
In our analysis of the motion of these electrons we will disregard
the effect of the driving term in equation (5.11), which will only
appear through the initial value of the electron velocity. We will
also neglect relativistic terms.

If rg/L = /L > 1, as a first approximation we can
neglect the part of the electron motion inside the plasma, ro+
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& > 0, and consider only the motion of the electron cloud in the
vacuum region. In the following we will consider two different
density profiles that are chosen in order to represent the leading
front and the bulk of the electron cloud respectively. First we
take a linear density profile and, from equation (5.11), we have

€ = —vo7 + Ww?zir?JAL, (5.15)

where vy = rgw’ is the initial value of the electron velocity.
Electrons come back into the plasma after the time interval
4uoL/w"z}. For zy — 0, i.e., in the case of electrons from the
region near the boundary, this time tends to infinity. From equa-
tion (5.15) we can express z; in terms of the Eulerian variables
t' and z = zo + £ and compute the density distribution of the
electrons moving out of the plasma boundary

1/2
2 [L+(@+wt)t2w?/L] ?_q
C"'wl2tl2

7 (5.16)
[1 + (.’l: + ’vot') t12w12/L]

Near the leading front, where z =~ —upt’, the electron density has
a linear profile n’ = nl, (z + vot') /L. For electrons far from the
front (zo > L) it is more convenient to refer to the case of a step-
like ion density profile. In this case the electric field for zo+ & <
0 is given by equation (5.9) and is equal to —4mengzo. The
Lagrangian and Eulerian electron coordinates are related by x =
zo — vot' + Zo (1 — ) wl,t?/2. Here vy = rpw'(Ww'/wpe)? <
rew’ and wpe > w' is the plasma frequency corresponding to
the density inside the step-like profile. For the electron density
we obtain a step-like profile that decreases with time as

n'(z, ) = 2l [2 + w221 - 3)] . (5.17)
5.6. Ion acceleration during “vacuum heating” of

electrons

As shown above, the density of the electron cloud expand-

ing in the vacuum region after a time greater than yw, ! is ap-
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proximately constant behind the leading front and its value de-
creases as t'~2. From equation (5.9) we find that the electric field
in the cloud is given by

+ ’Uot’
B, ~ —8meny—— "0 __ :
. 8meny 0= P)uien (5.18)

This field decelerates electrons and accelerates positively charged
ions. Their equation of motion can be written as

A’z Z,mez+ vot'

di? Mg 2

(5.19)

where m, is their mass and Z,e their charge. This equation
gives
z(t') = —vot' + A t'™ + Axt'*, (5.20)

where the constants A; and A, are determined by the initial
conditions and o, are given by

az =5 (14 (1~ 8Zume/ma)"] (5.21)

Since the ratio Z,m./m, is positive, the ions, which start be-
hind the leading front of the electron cloud which expands with
velocity —wvy, are accelerated by the electric field given by equa-
tion (5.18), but never pass the electrons. Their energy gain can
reach values of up to the order of myyyv/2.

5.7. Channel boring and soliton generation during the
propagation of a laser pulse in an inhomogeneous
plasma

In the 2D and 3D cases, in addition to the processes dis-
cussed above, the instability of the laser pulse results in pulse
filamentation, merging of the filaments and hosing of the light
beams. The transverse size of the self focusing channel in the
near-critical plasma becomes of the order of the laser wavelength.
This process is accompanied by the acceleration of fast particles
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which in turn generate a quasistatic magnetic field and change
the conditions of light propagation.

In order to illustrate the interaction of a relativistic laser
pulse with a weakly inhomogeneous plasma, we use 2D PIC sim-
ulations. The normalized amplitude of the incident laser pulse
is a = 3.85. The laser pulse is semi-infinite. The transverse
profile is Gaussian with a spot size equal to 15\. Initially the
plasma has a linear density profile with density varying along
the z-direction from zero, at the plasma vacuum interface at
the left hand side of the computation region, to n = 2n., at the
right hand side boundary. The scale length of the plasma inho-
mogeneity is 100A. The critical surface is localized at z = 50A.
The ions are movable, with an ion to electron mass ratio equal
to 3680 which corresponds to deuteron ions.

Figure 5.2 shows an s-polarized laser beam in the z,y
plane at ¢ = 160(27/w). Frames (a), (b) and (c) show the square
root of the electromagnetic energy density, the z-component of
the magnetic field, the ion density and the energy density of
electrons, respectively. In frame (a) we see that the nonlinear
interaction with the plasma leads to the filamentation of the laser
pulse and then to the merging of the filaments in the transverse
direction. The distribution of the z-component of the magnetic
field in frame (b) corresponds to the laser pulse filamentation:
in each filament we see a magnetic field generated by the fast
particles inside the filament. In the ion density distribution in
frame (c), we see the channel formed due to the ion motion under
the effect of the ponderomotive pressure and the pressure of the
quasistatic magnetic field [124]. The localized minima in the ion
density distribution in frame (c) correlate with the local maxima
of the electromagnetic energy density around the critical density
in frame (a). These are s-polarized solitons. We note that the
solitons remain well localized in the z,y plane despite the ion
motion.

A more detailed analysis of the time evolution of the laser-
plasma interaction shows that the solitons are generated in the
underdense plasma region near the critical surface and that they"
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Fig. 5.2. s-polarized laser beam in a plasma in-
homogeneous in the z-direction at ¢ = 160(27/w):
(a) the e.m. energy density; (b) the z-component
of the magnetic field; (c) the ion density.

move in the backward direction towards the vacuum-plasma in-
terface. This is illustrated in Fig. 5.3. This figure shows the
z and y coordinates of the soliton marked by an arrow in Fig.
5.2a plotted versus time. The z-component of the soliton veloc-
ity is negative and its value increases from approximately 0.33c
at £ = 26 to 0.83c near the left boundary. In the transverse
direction, along the y-axis, the soliton oscillates guided by the
plasma channel. When the soliton reaches the left boundary,
it radiates its energy in the form of a burst of electromagnetic
radiation.
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Fig. 5.5. Frequency spectrum versus y of
the reflected s-polarized radiation, (a), and
of the reflected p-polarized radiation, (b) at
t ~ 100(27/w).

The formation of the solitons and their acceleration to-
wards the left boundary leads to an enhanced plasma reflectivity.
Due to the difference in the life time of the s- and p-polarized
solitons the excess in the intensity of the reflected radiation is
mainly determined by the s-polarized solitons. This is seen in
Fig. 5.4, where the relative amplitudes of the reflected radiation
versus time are shown for (a) the s and (b) the p polarized laser
beam. The total absorption of the p-polarized and s-polarized
laser light is 95.7% and 80.6%, respectively. The reflected ra-
diation is strongly modulated. The width of the bursts in time
is larger than the laser period. The frequency of the electro-
magnetic radiation trapped and carried out of the plasma by
the solitons is well below the laser frequency (see Fig. 5.5). The
frequency is decreased by a factor of the order of four, and the
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reflected radiation is modulated in the transverse direction. We
note that the frequency decrease of the reflected laser radiation
has been observed in experiments [125].

6. Nonlinear interaction of laser pulses with
a foil

A high-power laser pulse interacting with a very thin foil,
modeled as a thin slab of overdense plasma, exhibits features that
are not encountered either in underdense or in overdense plasmas
[126] and offers special experimental conditions for investigating
the basic properties of the laser-plasma interaction (some of these
features were discussed in Ref. [127], see also Refs. [128] and [50]).
This problem has been the subject of experimental and computer
studies [129, 130]. These novel features become important when
the foil thickness is shorter than, or of the order of, both the
laser wavelength and the plasma collisionless skin depth.

Here we investigate how this interaction can be exploited
in order to change the shape of the laser pulse [126]. Shaping
a laser pulse provides a method for exciting regular wake fields
in a plasma leading to effective acceleration of charged particles.
The present method is based on the relativistic dependence of
the electron mass on the quiver energy. The leading and the rear
parts of the pulse are reflected by the foil, which is relativistically
transparent for the central part of the pulse where the intensity is
higher. This process cuts out the outer part of the laser pulse and
produces a sharp leading (and rear) edge, as is needed in order
to generate a good quality wake field. The conditions for the
foil to be transparent depend on the polarization and incidence
angle of the pulse.

To study the interaction of relativistically intense electro-
magnetic radiation with a thin foil in the 1D case we reduce the
problem to the solution of the Cauchy problem for the wave equa-
tion with a nonlinear source, i.e., finally, to a system of ordinary
differential equations for the electric field inside the foil. This-



306 S. V. Bulanov et al

approach is valid for an arbitrary incidence angle of the laser
pulse, since, as discussed above, a Lorentz transformation to a
reference frame moving along the foil can be used to reduce the
problem of oblique incidence to that of normal incidence [120)].
In the moving frame all variables are assumed to depend only on
time and on the coordinate perpendicular to the foil.

Here we apply this analytical model to study the relativis-
tic transparency of the foil and to investigate how the form of
the laser pulse changes depending on the foil thickness, on the
plasma density inside the foil and on the amplitude of the pulse.
Within this model the foil transparency is found to depend on
the relative magnitude of the pulse dimensionless amplitude a
and of the dimensionless foil parameter ¢

w2l Al
€ = ’
2we  4nd?

(6.1)

besides the pulse incidence angle and polarization. Here [ is
the foil width, wpe is the Langmuir frequency inside the foil
plasma and d. = c¢/w, the corresponding collisionless electron
skin depth. A thin foil is characterized by the inequalities I <
de < .

In the analytical model the foil is assumed to be infinitely
thin and the wave equation in dimensionless units for the dimen-
sionless vector potential a is written in the form

Byya' - Bua’ = (5(.’5) j'(a’), (62)

where a prime denotes, in the case of oblique incidence, quanti-
ties measured in the moving frame. The term on the right hand
side of equation (6.2) describes the electric current of the 1D
electric charge and the delta function, 4(z), models its sharp
localization at £ = 0. The dimensionless rationalized electric
current j'(a’) is a nonlinear functional of the vector potential
a'(0,t') at the charge position x = 0. Using Green’s functional
method the dimensionless electric field E'(z,t') and the mag-
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netic field B’(z,t') on the two sides of the foil can be written as
E(z,t) = Eyz,?) - 3§ [a(0,7)], (63

B'(z,t) = Bzt + %sign(m) &, xj[a(0,7)]. (6.4)
Here E'g(z,t') and Bg(z,t') are the electric and magnetic field
of the incident pulse, e, is the unit vector along = and a’(0,7) is
the vector potential at the foil at the retarded time 7 = t' — |z|/c.
The vector potential at the foil satisfies the ordinary differential
equation [61, 126]

4'(0,¢) - JPOT]— (0,¢), (6.5)

which is equivalent to equation (6.3) at z = 0. We see that this
equation does not have high order derivatives with respect to
time, contrary to the case of a point three-dimensional charge,
where the equations of motion with the radiation force have
unphysical “self accelerated solutions” (see discussion in Refs.
13, 131, 132]).

Further we consider the case when the plasma slab position
is fixed at z = 0. Equation (6.5) with z(¢') = 0 plays the role
of a nonlinear boundary condition for the electromagnetic waves
at z=0.

As we discussed above, the wave frequency and wave-
vector in the moving frame are related to those in the laborato-
ry frame and to the incidence angle 6y by w' = wcosfy, k' =
kie, = kcos ez, with k = (k2+k2)"/2 and k,/k, = tan6,. The
e.m. fields are given by E' = Eycosbpe,, B’ = Ejcosbpe, for
an s-polarized wave (with Ey replaced by By for a p-polarized
wave) where Fy (By) is the z-component of the electric (mag-
netic) field of the wave in the laboratory frame, and the plasma
density in the foil is given by n' = n/ cos 6.

The dependence of j' on a’' follows from the model that
we adopt in order to describe the foil. We assume that the
ions do not move under the action of the electromagnetic wave
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and take the electrons to be collisionless. Since we disregard
charge separation effects, electrons are allowed to move in the
7,y plane only and their density is taken to be constant. Using
the conservation of the y, 2 components of the canonical electron
momentum in the moving frame, we find that the electric current
j' takes the form

(@) = —2(1+tan6?) " b(z)

a' — e, tanb, .
g {[1 @ et " e”} - (66)

The factor (1 + tan?2)}/? that multiplies the dimensionless pa-
rameter € is due to the transformation of the plasma density
to the moving reference frame. This expression can be used
to obtain an approximate form of the transmitted and reflected
fields through the foil, of the harmonic generation, including the
generation of a quasi-steady DC current in the case of oblique
incidence, and of the polarization change due to the relativistic
nonlinearities.

6.1. Relativistic foil transparency and pulse shaping

Equation (6.6) indicates that the transmission through the
foil depends on the pulse amplitude, polarization and incidence
angle and on the dimensionless parameter €. In the simple case
of normal incidence, 6, = 0, of a circularly polarized pulse,
ag(z,t) = ag(t) exp(i(z — t)], we can solve equations (6.5 , 6.6)
by looking for solutions of the form a’(0,t) = a(t)exp(—it),
where we represent the two dimensional vector a(t) as a complex
valued function a,+ia, = A(t) exp[¢¥(t)], with amplitude A(t)
and phase ¥(t). If we assume that A, ao and ¥ are slowly
varying functions of time and neglect the time derivatives, we
find

1/2

1 2 2_ Y
A=%{[4a0 1+eo—a0)] (1+eo—a0)} , (6.7)
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and
¥ = W(eg,ap) = — arccos (A/ap). (6.8)

We obtain the amplitude and the shape of the transmitted and
of the reflected pulse. We find that the condition for the foil to
be transparent to the electromagnetic radiation in the limit of
moderate intensity ay < 1 is ¢y < 1. This can be rewritten as

w > wy(l/2d,), (6.9)

which differs from the transparency condition for uniform plas-
mas by the factor (I/2d,). For relativistically strong waves with
ap > 1, a foil with ¢, > 1 is transparent if ay > €. This
condition can be written as

w > (w2l /2ca), (6.10)

while a uniform plasma is transparent to relativistically strong
radiation if [44, 46] w > w,/ay’” [see equation (1.28)].

Let us now consider a laser pulse with amplitude varying
along z. The amplitude is zero at the beginning of the pulse,
increases up to its maximum value a,, and then decreases to
zero. If a,, > €y the portion of the pulse where a < ¢y is
reflected by the foil, while the portion with a > ¢, propagates
through the foil. The model for the foil response used above can
also be used to study the dependence of the pulse transmission
on its incidence angle and polarization. However this model is
based on a number of approximations and their validity must be
checked in the framework of a more detailed description such as
particle in cell (PIC) simulations. In Figure 6.1 we present the
results of 3D PIC simulations of a laser-foil interaction [126]. A
circularly polarized pulse, of initial width [, = 10J, is shown
before (left column), during (central column) and after (right
column) its interaction with the foil. Row (a) gives the z,y.
dependence of the pulse e.m. energy density and shows that the
pulse loses its outer part, where the amplitude is smaller than ¢,
due to its interaction with the foil. This “peeling” of the pulse
provides an example of the nonlinear relativistic transparency of
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Fig. 6.1. Results of 2D3V PIC simulations of the
laser-foil interaction. The foil is located at = = 30A.
(a) Distribution of the e.m. energy density as a func-
tion of £ and y. (b) Distribution of the e.m. energy
density along the z axis at y = 0.

the plasma foil. As a result of this peeling a pulse with a sharp
edge is formed as shown in row (b). The energy absorbed by
the particles in the foil is only a few percent of the total pulse
energy. The pulse curves the foil and makes it concave. The
modification of the foil shape (row c) acts as a concave mirror
and focuses the reflected radiation into a narrow beam with a
width much smaller than that of the incident pulse (d).

6.2. Induced backward focusing of the light reflected
at a mirror deformed by the radiation

In Figure 6.1 we see strong focusing of the reflected radia-
tion in the backward direction to a very small spot, as found in
Ref. [126]. The transverse size of the reflected beam is close to
one wavelength. This backward focusing of the electromagnetic
radiation is a nonlinear effect that appears due to deformation
of the critical surface under the light pressure. We shall call this
phenomenon backward self-focusing of the light reflected by a
mirror deformed by the radiation. This nonlinear effect appears
due to deformation of the surface of the critical density under
the light pressure.
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In the “snow plough” approximation we can show that the
critical surface moves inward inside the plasma as

FE w me\ /2
f(t) = Wt =a (E) (;n-:) ct. (611)
In the case of a thin foil, the foil deformation is described by the
dependence:
() =a? [2) meSt (6.12)
- Wpe /) ™y ls . .

Approximating the laser pulse amplitude near the pulse axis as
a = ao(l — y?/(21%)), where I, is the pulse transverse inhomo-
geneity scale, we obtain that the deformed mirror has a parabolic
form given by

= &(t) [1 -’/ (283 D] (6.13)

Here ¢ = 1 and &(t) is given by equation (6.11 for a thick
plasma while for the foil ¢ = 2 and &p(t) is given by equation
(6.12), with @ = ag. The radiation reflected from the mirror is
focused at the distance z; = [2 /2¢€o(t). When the deformation
of the mirror grows the focus distance approaches the plasma-
vacuum interface.

6.3. Change of the wave frequency and polarization

If the normally incident wave is linearly polarized, equa-

tions (6.5) and (6.6) can be written as
a, R

where a,(t) is the dimenswnless wave vector potential taken
along the z-direction. Due to the nonlinearity of this equation,
a relativistically strong wave with amplitude agy, of order one
or greater produces high order, odd harmonics of the carrier.
frequency. In the limit a9/€p < 1 we obtain for ag,(t) = agcost

a, + €

agsint

o N1/2
(eg — a3, sin® t)

a, = —

(6.15)
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Since ag,/€o is assumed to be small, we can expand equation
(6.15) and find

2 4
a, = -2 [1_3<%) +5(%) +] sint + (9%) cost
€o 2¢q 2¢p €0
ao; 3 1 (a02>2 .
(=2 (= == t
( €0 ) [2 M 2¢0 " n3
3(182 3 Qo 5 .
( 23 ) cos 3t B ( ” ) sinot + ..., (6.16)

which describes the well known generation of odd harmonics due
to the relativistic dependence of the electron mass on the oscil-
lation amplitude in the incident wave.

A completely different situation occurs when the wave is
obliquely incident. In this case the vector potential a’y in the K’
frame has two components, ag, and ag,, corresponding to the
p and to the s polarization respectively, and equations (6.5,6.6)
take the form

) Doe + a; Doe .
a;/+€0\/1+p(2)e{ = :a;)y

V1+ (poe +a,)2+(a))? /1492,
(6.17)

for the p-polarization, and

V1+ s
' Poe il (6.18)

a +€a =q
U Tt et (@)

for the s-polarization. We recall that pg./(1 + p3.)'/? is the un-
perturbed electron velocity in the K'’-frame which is equal to the
ion velocity. Equations (6.17) and (6.18) describe interacting s-
and p-polarized waves. If the s-polarization is absent in the in-
cident wave, it is not excited by the p-polarized component. On
the contrary, an s-polarized wave produces a p-polarized com-
ponent due to the wave modulation of the relativistic electron
velocity along y.
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The nonlinear interaction of these components generates
both odd and even harmonics. The generation of odd and even
harmonics depending on the laser light polarization has been
obtained in PIC simulations [37] and [133]. In addition a zero
frequency (DC) electric current and a quasistatic magnetic field
are produced by s-polarized waves.

It is convenient to adopt a simplified description of the
harmonic generation in which €p/aj is large.

First we assume the incident wave to be s-polarized, i.e.,
ag, = 0. In the limit €/af > 1 we can neglect the time deriva-
tives on the left hand side of equations (6.17), (6.18) and obtain
for the z-component

-1/2
o, =dp, (G-a2) " (6.19)

For the y-component we obtain
Lo\ —1/2
a; = —Pge [1 -+ a3)1/2] = Poe [60 (6(2, - a,gi) - l] . (6.20)

We recover the result that the frequency and the polarization of
the wave are changed. The transmitted and the reflected radia-
tion contain both polarizations, the s-polarization is composed
of odd harmonics and the p -polarization of even harmonics,
including the zero frequency response which describes the gen-
eration of a quasistatic magnetic field. The fact that odd and
even harmonics appear in the s- and p-polarized components
of the reflected light was observed in the computer simulations
presented in Ref. [37]. In the laboratory frame, the dependence
of the odd harmonic amplitudes on the amplitude of the incident
wave is given by equations (6.19), after expressing the time #'
and the amplitude ag, in the K'-frame in terms of the time ¢
and the amplitude of the electric field Fy, in the K -frame. We
see that the efficiency of the harmonic generation depends on the
incidence angle in the laboratory reference frame through the re-
lationship —ag, = Ey, = Ey, cosbp. Similarly the amplitudes of
the even harmonics can be found by expanding (6.20)

@), = Poz(Gye/2€0)%(1 — cos 2t') + ..., (6.21)
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which shows that the efficiency of generation of the second har-
monic and of the DC electric current depends on the angle of
incidence as ~ sin 26,.

Now we consider the p-polarized incident wave, i.e., ag, =
0. We see from equations (6.17) and (6.18) that the amplitude of
the a!,-component remains equal to zero, and there is no trans-
formation of the polarization. In the limit € /a5 > 1 we can
neglect the time derivatives on the left hand side of equation
(6.18) and write for the y-component

o = %y/ €0 + Poe
Yy
\/1 + pOe (O‘Oy/eo + pOe)2

For not too large incidence angles such that (z{,yp()e Jeo < 1,
taking dg, = ag, sint' we obtain

~ Poe. (6.22)

2
!

3a
al, = ﬁp03(1+p§e)
€0

a5 2 3ag, 2 4
+ ——”-(1 + pge) + gg—(l + 6p¢, + 15pp,) | sint’

3al2
12 pOe(l + pg,) cos 2t'

:3
(1 + 6p3, + 15p;,) sin 3t' + (6.23)

The expressions obtained above correspond to the ampli-
tude of the wave inside the foil. We see that the amplitude of
the nth harmonic (n # 1) in the reflected and in the transmit-
ted pulses are equal and proportional to €y (Ey/€p)" . In Figure
6.2 we show the frequency spectrum of the z-component of the
magnetic field for a p-polarized, frames (a) and (b), and for
an s-polarized pulse, frames (c) and (d). The laser pulse with
maximum amplitude a, = 5 and length [ = 25) at normal
incidence interacts with a foil of thickness [ = 0.375A and den-
sity such that w,/w = 1.8, which correspond to €y = 3.82; the
incidence angle is 6, = 60°.
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Fig. 6.2. Frequency spectrum of the z-component
of the magnetic field for a p-polarized, (a) and (b),
and for an s-polarized pulse, (c) and (d).

6.4. The oscillating mirror model for high harmonic

generation

An additional mechanism for the generation of high har-
monics of the laser radiation at a steep plasma-vacuum interface
is the so called “oscillating mirror” mechanism [37].

At the plasma vacuum interface the electromagnetic radi-

ation reflected from the plasma is produced by a source inside
the plasma that has the form of a flat charge sheet. From the
one dimensional Lienard—Wiechert potential we obtain for the
y-component of the electric field (6.3):

vi(r)
c— ()

where v, is the quiver velocity of the electrons along the plasma
surface, ! is the thickness of the reflecting charge sheet, the
retarded time 7 obeys the equation

ct' —m) =z -§(r),

E, =2mn'el ——— 31gn[:1: £ 7')] (6.24)

(6.25)
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and £(7) is the displacement of the electrons in the normal
to the plasma surface direction. By expanding £(7) and the
denominator of equation (6.24) into a series of the ratio £/c
we see that the radiation contains all harmonics of the wave
frequency w. The ratio between the amplitudes of the nth and
(n + 1) th harmonics is of the order of £/c.

6.5. Ion acceleration during the interaction of a laser
pulse with a slab of overdense plasma

In this section we discuss the ion acceleration by an ul-
tra relativistic laser pulse interacting with a slab of overdense
plasma. The 2D PIC simulations were performed for the case
of a pre-deformed plasma slab (a thin foil). A foil of thickness
2) in the central part is deformed in the form of a parabo-
la. The parabola is given (for £ < 6)) by the formula z =
4\ +0.32(y — 7.50)2/) and the curve is 2\ thick. The maxi-
mum plasma density is n = 30n, and the plasma consists of
protons (ion mass m; = 1840m) and electrons.

As noted before, effective ion acceleration requires laser
pulses in the petawatt power range. In order to show this we
consider a plasma slab of width [; and assume that it is irradi-
ated by a laser beam with amplitude a and radius I; > [, at the
focus. The electrons interacting with the laser light are displaced
from their initial position and, if their energy & = mcc?a?/2
is large enough, they can overcome the attractive electric field
due to charge separation. For the electrons to be blown off,
the pulse amplitude must be such that £ > Ecoulomb, With
Ecoutomb = 2me?nlyl, the Coulomb energy, ie., a > (I,l, /d2)"/*.
Here d. = c/wpe is the collisionless skin depth. Due to the
Coulomb repulsion the ions start to expand and gain an en-
ergy of the order of Ecoulomp. Assuming & = Ecoulomb, the
ion energy gain in this Coulomb explosion can be rewritten as
& =~ mic?(me/m;)a® which is of the order of the ion rest mass
when a ~ (m;/m,)'/2.
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In 2D PIC simulations an ultra intense p-polarized laser
pulse is initiated at the left hand side boundary. The pulse has a
Gaussian profile both in the longitudinal and in the transverse di-
rection. The pulse length and spot size (its width) are 5.5\ and
5\, respectively. The normalized vector potential of the incident
pulse is equal to a = 89, and is larger than (m;/m,)'/? ~ 43.
For a 1 um laser, the intensity corresponds to 1.6 x 102 W cm ™2
and the pulse length to 18fs.

For the chosen parameters of the laser pulse and plasma,
the dimensionless parameter €y = w?,l,/2wc [see (6.1)] is equal
to 180. The normalized laser amplitude a = 89 is smaller than
€o. In this case, according to Ref. [126] the foil is not transparent
to the laser radiation and only a relatively small portion of the
radiation can be transmitted through the foil.

The interaction of the laser pulse with the deformed foil is
shown in Fig. 6.3: frames (a) and (c) correspond to t = 9(27/w),
and frames (b) and (d) correspond to t = 15(27/w). Frames (a)
and (b) show the distribution of the electromagnetic energy den-
sity and frames (c) and (d) show the z-component of the electric
field in the z,y-plane. Since the target is initially deformed, the
laser pulse is incident obliquely in the regions outside the center.
The electric charge separation leads to the generation of a strong
electrostatic field, as shown in Figs. 6.3b, d. The foil deforma-
tion leads to enhanced absorption of the laser light {135]. The
fractions of the reflected and transmitted laser energy are respec-
tively equal to 16.26% and 12.26%. The absorption of the laser
pulse is accompanied by an effective particle acceleration. In Fig-
ure 6.4 the phase plane of electrons with energy above 1.5 MeV
is shown in frame (a) at ¢ = 15(27/w). The electrons with maxi-
mum energy up to 200 MeV are accelerated in the forward direc-
tion twice per laser period due to the v x B force [136] and the
energetic electrons are accelerated in the backward direction once
per laser period as observed in Ref. [137]. The phase plane of the
fast ions is shown in Fig. 6.4b: the ions are accelerated both in
the backward and in the forward direction, but the forward ion
acceleration is predominant. The maximum momentum reached



318 S. V. Bulanov et al

y/2 1‘21 f PR ax = 0377 c 02
10
8
6
4
2 -0.2
y/A i: E 0.2
10 !
8
6
n:
2 -0.2
1 L . ] 1 |

0 2 4 6 81012 2 4 6 8 10 z/A

Fig. 6.3. Electromagnetic energy density normal-
ized to its peak value inside the pulse, (ag’ and (b),
and E.-component of the electric field normalized
to the laser field Ey, (c) and (d). Frames (a)
and (c) correspond to t = 9(27/w), (b) and (d) to
t = 15(27/w). Contour levels vary from 0.1 to 1.2
with 0.1 interval.

by the ions is P,/m;c ~ 1, which corresponds to the GeV energy
range. Also in this case the acceleration mechanism must be at-
tributed to the Coulomb explosion which gives a final ion energy
of the order of Ecoytomb X 2m€*nl R = 21?m c*(wpe/w)? (I, R/ N?).
For the parameters of the simulations Ecoulomp & ™Mic? i.e., ap-
proximately 1 GeV.

Besides being accelerated, the ions are also well collimat-
ed in the forward direction. In Figure 6.5 we show the energy
density of electrons (a), ions (b) in the z,y-plane and the z-
component of the magnetic field (c) at ¢ = 15(27/w) together
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Fig. 6.4. Phase plane of electrons (pze,z) with
energy above 1.5MeV, (a), and of ions at t =
1527 /w), (b).

with a plot of the quasistatic magnetic field and of the ion en-
ergy density at z = 4.65\ versus y at t = 12(27/w) (d). The
ions moving in the forward direction form a single jet-shaped
filament. Inside this filament the electric charge neutrality is
broken. However, the repulsion in the transverse direction due
the electric force is partially balanced by the magnetic force. We
see in Figs. 6.5¢c, d the change of the sign of the magnetic field
at the axis corresponds to the electric current carried by fast
ions. The pinching does not confine the ions in the longitudinal
direction: they expand and gain energy. The quasistatic mag-
netic field is approximately 300 MG (10 times smaller than the
magnetic field in the laser pulse) and the transverse size of the
ion jet is equal to 0.2)\. At ¢t = 18(27/w) the ion density in the
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Fig. 6.5. Energy density of electrons and ions
in the z,y-plane, (a) and (b); z,y-distribution
of the z-component of the magnetic field at ¢ =
15(2w/w), (c); quasistatic magnetic field and the
ion energy density at £ = 4.65 versus y at t =
12(21r/w§,y d)

jet is only twice smaller than the initial density in the foil and
is equal to 15n. (but significantly larger than the local value of
the electron density shown in Fig. 6.5a), which corresponds to a
density of relativistic ions of the order of 1022 cm™3.

7. Coulomb explosion of a cluster irradiated
by a high intensity laser pulse

The cluster targets irradiated by the laser light show the
properties of both underdense and overdense plasmas as well as
novel optical properties [42]. Very efficient absorption of laser
energy has been demonstrated in Refs. [39, 40] with the for-
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mation of underdense plasmas with very high temperature and
X-ray emission. Such a high temperature plasma makes table
top fusion experiments [40] possible and provides a mechanism
for ion injection into accelerators.

The regimes of laser-cluster interaction, with the gener-
ation of fast ions, investigated in Ref. [39] refer to conditions
dominated by collisional absorption and by heating of the clus-
ter plasma. With the increase of the laser pulse intensity up
to the range of 10%! —10%22 W cm™2, the laser light can rip elec-
trons away from atoms almost instantaneously, instead of going
through secondary processes of heating and collisions. In the
petawatt range of parameters the laser radiation has such a high
intensity that it can blow off all the electrons and prepare a cloud
made of an electrically non-neutral plasma. Provided the cluster
has large enough size and the density of a solid, ions are accel-
erated up to high energy during the Coulomb explosion of the
cloud [138].

7.1. Expansion of the non-neutral ion cloud

An electrostatic potential appears in the plasma formed
by a cluster irradiated by a laser pulse. The value of this elec-
trostatic potential, which is due to the separation of the electric
charges, can be at most equal to the value of the potential at
the surface of a charged sphere with a radius R and density
n: QYmax = 4mneR?/3. If the value epmax is negligibly small
compared with the kinetic energy of the electrons acquired in
the laser field, we obtain K,/mec? = a?(w/wpe)!. In the case
when K, > epmayx, all the electrons can be blown off by the
laser radiation during a time 6t ~ R/c. Thus we obtain the
following estimate for the amplitude of a laser pulse capable
of pushing away all the electrons: a > (2/3)"?(R/d.)(wpe/w),
where d. = c/wp is the collisionless skin depth. We see that
in the case of a sphere with a radius of the order of the laser
light wavelength (R =~ luym) and n ~ 102 cm™3, this condi-
tion is fulfilled for a =~ 200, i.e., for a laser light intensity of
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the order of 10%* W cm™2. For more moderate intensities of the
laser pulse, ~ 2 x 102! Wem™2, the quiver radius of electrons
inside the cluster is smaller than R. The quiver radius is about
re = eE/mw?, = d.a(w/wp). In this case only a small por-
tion of the electrons leave the cluster during one period of the
laser radiation: dn; = (rg/R)n;. It takes a time of the order of
t1 = 2m(R/rg)w™! to blow off all the electrons.

We can identify two stages in the cluster expansion. Dur-
ing the first stage, which lasts a time ¢,, the cloud expands
gradually. Then it explodes with a timescale of explosion ap-
proximately given by t; = w;,-l. Fast ions acquire their energy
during this second stage.

Now we consider the motion of the ion component under
the Coulomb repulsion in this second phase. Assuming the ions
to be cold and to move radially, we obtain the energy integral
K; + II = constant, where the ion kinetic energy is

Ki = (77’1?64 +p302) 2 - micz, (71)

and the potential energy is

H(ro,t) _~  Q(ro)  Q(ro)

dre? 1o+ &(ro,t) ro

(7.2)

To is the ion position at the beginning of the second phase,
&(ro,t) is the ion displacement at time ¢ and

Qo) = [ nulro)ridra. (73)

During the expansion of the cloud the ion kinetic energy increas-
es, for £ — oo, up to the value 4me?Q(ro)/ro which depends on
the initial position of the ion inside the cloud. Assuming a ho-
mogeneous distribution of the ion density inside the cloud, n;,
and calculating Q(ro) = n;r3/3, we obtain that an ion acquires
a final energy K; = 4mn;e?r?/3, ro < Ry, which is limited by

Kax = 47n;e? R2/3. (7.4)
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Here R, = \/ (2/3)R3ne2)\/am.c? is the cloud radius at the
beginning of the second stage of the cluster expansion. Here
R, is estimated as the value of the cloud radius for which the
Coulomb force on the electrons becomes smaller than the electric
force due to the laser light.

Since the ion energy is proportional to 72 we can calculate
the ion energy spectrum df /dK; which, due to the flux continu-
ity in phase space, is proportional to dro/dK;. We obtain

df 2R3 (Kmax)l/2 (7.5)
dK; 3 K; ‘ '

When the ion energy is smaller than Mc?, we can use
a nonrelativistic description of the Coulomb explosion. In this
approximation we write the following system of equations of mo-
tion

£ wh T3
g (7

where w,; = (47n;e? /mi)l/ 2 is the ion plasma frequency. In-
tegrating equation (7.6) with the initial conditions £(0) = 0,
£(0) = 0 yields

%ln 26 + 1o + 21/€% + 1o ] 4 \/677: ro§ _ \/g wpt.  (7.7)

To

When the displacement is small, £ < ro (¢t < 2Y/2w;'), ions
move with constant acceleration £(ro,t) & rowt?/6, while, for

t — 0o, we have &(ro, t) & 7o (2/3)"/? wpit. In the latter case ions
move with constant velocity, which corresponds to the kinetic
energy given by equation (7.2). The typical time of the ion
cloud expansion is of the order of w;il. Thus we can neglect the
deformation of the ion cloud during laser pulse interaction with
the electron component (it lasts about R/c) if Rwy;/c < 1.
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t=14.00

0 2 4 6 8 10 vy

Fig. 7.1. Distribution of the electrons ripped off
by the laser light at ¢ = 11.7, (a), and the ion

cloud at t =28, (b).

7.2. Results of 2D and 3D PIC computer simulations
of the Coulomb explosion of small clusters

In order to illustrate both the electron and the ion dynam-
ics when a small cluster is irradiated by laser light we performed
2D PIC simulations. The initial radius of the cluster is equal
to 0.1), the plasma density n = 100n.,, and the ion to electron
mass ratio m;/m, = 2000. The laser pulse is circularly polarized
with amplitude a = 5. Figure 7.1a shows the distribution of the
electrons ripped off by the laser light at ¢ = 11 x 27 /wp. This
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time corresponds to the change from the phase of gradual expan-
sion of the cluster to the phase of the Coulomb explosion. In first
approximation the ion motion can be considered as isotropic, but
an azimuthal asymmetry is also clearly seen together with modu-
lations in the radial direction (see Fig. 7.1b, where the structure
of the ion cloud is shown at ¢ = 28 x 27 /wy).

0.003 -
y//l
0
L1 11 1 ) 1 0‘003’ n
0 2 4 6 8 10 12 14 -0.003 1] 0.003
z/A z/A

Fig. 7.2. Electron, (a), and ion, (b), trajectories
in the projection in plane (z,y).

Two dimensional simulations give a qualitative pattern for
the cluster expansion, but cannot be used for a quantitative de-
scription of the ion acceleration because the electrostatic energy
diverges logarithmically in the two dimensional case. On the con-
trary, in the 3D case it is finite and is given by equation (7.2).
In order to study the ion acceleration we performed 3D simula-
tions. We used the relativistic analog of the methods of particles,
where the interaction between charged particles is described by
the Lienard-Wiechert potentials calculated taking into account
the relativistic retardation. The results of the simulations are
shown in Figs. 7.2 and 7.3. The cluster is made up of 60 hydro-
gen atoms, which we suppose to be initially uniformly distributed
on the surface of a sphere of radius 3.5A. A linearly polarized
laser pulse with amplitude @ = 5 and length 2), interacting
with the cluster rips all 60 electrons away. Then the Coulomb
explosion of the ion cloud starts. In Figs. 7.2a, b we show the
electron and ion trajectories projected on the (z,y) plane. We
see that the electron motion agrees with the expressions given by
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15
K/md
t=2T

10 |

5 |

i 1 1
0 4 8 12 16 20
T/t

Fig. 7.3. Time dependence of the electron kinetic
energy.

equations (4), and that the ion cloud expands almost spherically
symmetrically. In Fig. 7.3 we present the time dependence of the
electron energy. At the beginning, in agreement with equation
(4), the electron energy increases with time while the electrons
remain inside the laser pulse. Then it decreases to zero when the
laser pulse moves ahead of the electrons.

8. Conclusions

In this review we have discussed the nonlinear relativistic
dynamics of plasmas interacting with high intensity laser pulses
and have presented the different physical phenomena starting
from lower amplitude regimes in underdense plasmas, where only
the electrons are relativistic, and then moving towards higher
pulse intensities in the petawatt power regime, where ions too
become relativistic. We have then considered overdense plasmas,
where the plasma inhomogeneity plays a fundamental role, and
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targets with intermediate physical characteristics such as thin
foils and clusters.

In all these cases we have stressed the important inter-
play between the investigation of basic physics features, such as
the formation of coherent solitonic nonlinear structures, and the
applications that these new phenomena can open in an interdis-
ciplinary context (for example in high energy astrophysics) and
for practical use (from energy production to medicine).

An additional point is the fundamental role that numerical
simulations play in the analysis of these “extreme” regimes which
are outside the reach of most analytical developments because
of their high dimensionality and because of their full nonlin-
ear dynamics. Simulations here are not only used for validating
analytical models, but also play the more vital role of an in-
vestigative tool for discovering new phenomena. Obviously this
simulation analysis must be accompanied by the development of
an appropriate terminology, in order to describe the numerical
results, and must be guided by an a priori understanding of the
relevant range of parameters and their scaling. Both the termi-
nology and the parameter estimates can only be obtained from a
physical understanding based on the extrapolation of simplified,
lower dimensionality models.
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